figshare
Browse
1/1
2 files

Targeted deep sequencing of the PEAR1 locus for platelet aggregation in European and African American families

dataset
posted on 2018-03-19, 18:24 authored by Ali R Keramati, Lisa R Yanek, Kruthika Iyer, Margaret A Taub, Ingo Ruczinski, Diane M Becker, Lewis C Becker, Nauder Faraday, Rasika A Mathias

Coronary artery disease (CAD) remains a major cause of mortality and morbidity worldwide. The aggregation of activated platelets on a ruptured atherosclerotic plaque is a critical step in most acute cardiovascular events like myocardial infarction. Platelet aggregation both at baseline and after aspirin is highly heritable. Genome-wide association studies (GWAS) have identified a common variant within the first intron of the platelet endothelial aggregation receptor1 (PEAR1), to be robustly associated with platelet aggregation. In this study, we used targeted deep sequencing to fine-map the prior GWAS peak and identify additional rare variants of PEAR1 that account for missing heritability in platelet aggregation within the GeneSTAR families.

In this study, 1709 subjects (1043 European Americans, EA and 666 African Americans, AA) from families in the GeneSTAR study were included. In vitro platelet aggregation in response to collagen, ADP and epinephrine was measured at baseline and 14 days after aspirin therapy (81 mg/day). Targeted deep sequencing of PEAR1 in addition to 2kb of upstream and downstream of the gene was performed. Under an additive genetic model, the association of single variants of PEAR1 with platelet aggregation phenotypes were examined. Additionally, we examined the association between the burden of PEAR1 rare non-synonymous variants and platelet aggregation phenotypes.

Of 532 variants identified through sequencing, the intron 1 variant, rs12041331, was significantly associated with all platelet aggregation phenotypes at baseline and after platelet inhibition with aspirin therapy. rs12566888, which is in linkage disequilibrium with rs12041331, was associated with platelet aggregation phenotypes but to a lesser extent. In the EA families, the burden of PEAR1 missense variants was associated with platelet aggregation after aspirin therapy when the platelets were stimulated with epinephrine (p = 0.0009) and collagen (p = 0.03). In AAs, the burden of PEAR1 missense variants was associated, to a lesser degree, with platelet aggregation in response to epinephrine (p = 0.02) and ADP (p = 0.04).

Our study confirmed that the GWAS-identified variant, rs12041331, is the strongest variant associated with platelet aggregation both at baseline and after aspirin therapy in our GeneSTAR families in both races. We identified additional association of rare missense variants in PEAR1 with platelet aggregation following aspirin therapy. However, we observed a racial difference in the contribution of these rare variants to the platelet aggregation, most likely due to higher residual missing heritability of platelet aggregation after accounting for rs12041331 in the EAs compared to AAs.

History

Usage metrics

    Platelets

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC