Synthesis of 2(5H)-Furanone Derivatives with Symmetrical and Unsymmetrical Bis-1,2,3-triazole Structure

The interesting bioactivities of 2(5H)-furanone, 1,2,3-triazole, and amino acid derivatives have promoted their combination into one multifunctional molecule. The symmetrical bis-1,2,3-triazoles and mono-1,2,3-triazoles with one free azide group are synthesized respectively by controlling the molar ratio of reactants, N-[5-alkoxy-2(5H)-furanonyl] amino acid propargyl ester and 1,4-diazidobutane. The unsymmetrical bis-1,2,3-triazoles are afforded by the subsequent reaction of mono-1,2,3-triazoles with other terminal alkynes with good to excellent yields in a short time under the same mild “click” reaction conditions. The 32 new compounds obtained in the reactions are characterized by Fourier transform infrared, 1H NMR, 13C NMR, mass spectrometry, and elemental analysis. Because of the diversity of four or five basic units in molecule, this methodology provides easy access to different chiral 2(5H)-furanone compounds with polyheterocyclic structure, especially with unsymmetrical bis-1,2,3-triazole moiety. Importantly, a simple approach is provided for the synthesis of unsymmetrical bis-1,2,3-triazoles using common diazides.