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Abstract 

The terminology and definition of surface tension are discussed. In particular, the 

surface tension is defined as the partial derivative of the surface excess Gibbs 

energy with respect to an infinitesimal increment of surface area at constant 

temperature and pressure. The surface tension is also formulated as the sum of a 

stress-free component and a stress-containing component. The stress-containing 

component is defined as the surface stress. Finally, the case of charged surfaces is 

analysed, and the Gokhshtein relations are derived from the Gibbs potential, in the 

special case that the electrode/solution interface is ideally polarizable.  
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Introduction 

Vladimir Sergeevich Bagotsky had a lifelong interest in electrochemistry and 

electrochemical thermodynamics [1]. His first monograph Kinetics of Electrode 

Processes was published with A. N. Frumkin, Z. A. Iofa, and B. N. Kabanov in 1952; 

his final work Fuel Cells: Problems and Solutions appeared in 2009 [2,3]. In 

between, he published more than 400 technical papers on electrochemical topics, 

many concerned with advanced power sources. Meanwhile, his textbook 

Fundamentals of Electrochemistry provided students with an authoritative 

introduction to electrochemical science [4]. His passing marks the end of an era. 

During much of Bagotsky’s lifetime, the “cold war” hampered the normal exchange of 

scientific ideas between Russia and the West, so that developments on one side 

were sometimes completely missed by the other. One such area was surface 

thermodynamics, for which many important Russian developments are only now 

coming to light [5]. For example, the surface tension of solids was considered by A. 

Ya. Gokhshtein as long ago as 1976, but his book has never been translated into 

English [6]. Remarkably, Gokhshtein introduced two new thermodynamic relations 

that have still not been thoroughly assessed by western researchers. 

In the present work, I derive the Gokhshtein relations from the Gibbs potential. My 

hope is that this will help clarify the logical status of the Gokhshtein relations, and 

incidentally show how they connect with the corresponding Maxwell relations. 

 

The Measurement of Surface Tension 

Surface tension is so-called because a tensile force must be applied to a surface to 

balance its natural tendency to contract. Experimentally, an obvious way of 

estimating the surface tension (𝛾) is to measure the partial derivative of the work-of-

forming-the-surface (𝑤) with respect to the surface area (𝐴), whilst holding certain 

variables (such as temperature and pressure) constant. 

𝛾exp  =  (
𝜕𝑤(𝐴)

𝜕𝐴
)

T,P
  

(1) 

This approach suffers from a number of defects, however [7]. Most importantly, the 

measured value of 𝛾 will depend on the precise method by which the surface area is 

changed. Friction forces may also be included inadvertently in the measurement. 

Further, there may also be configurationally trapped states (as in glasses) which do 

not relax on the timescale of the experiment (or even on the timescale of the 

Universe!).  
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To avoid these complications, surface scientists prescribe a special way of changing 

𝐴 so that friction forces, trapped configurations, and multiple pathways are avoided. 

What they do is focus on (thought-) experiments in which the work of forming 𝐴 is 

absolutely minimal at every stage, so that the value of 𝛾 depends only on the value 

of 𝐴 and not at all on the path by which 𝐴 is reached. In the jargon of 

thermodynamics, this is called the “reversible” path. Further, if the temperature and 

pressure are held constant while this hypothetical experiment is performed, then the 

work 𝑤 may be replaced by the surface excess Gibbs energy 𝐺, 

𝛾(𝐴)  =  (
𝜕𝐺(𝐴)

𝜕𝐴
)

T,P
  

(2) 

This is the definition of surface tension found in many reviews and textbooks. (See, 

for example, Eq. (4.47) of R. Defay and I. Prigogine [8]) It is, strictly speaking, the 

definition of the reversible surface tension [although no-one seems to use this 

terminology] and it requires a state of thermodynamic equilibrium at all values of 𝐴. 

To summarize: the use of the surface excess Gibbs energy 𝐺 rather than the work 𝑤 

compels 𝛾 to be a function of state. This has advantages and disadvantages. An 

advantage is that, by restricting attention to changes in 𝐺, the value of the reversible 

surface tension 𝛾 depends only on the value of 𝐴 and not at all on the path by which 

𝐴 is reached. But a disadvantage is that it leaves open the question of how the 

minimum Gibbs energy is actually achieved in a real system. For example, the 

minimum Gibbs energy might be achieved by adding new surface atoms or by 

stretching apart existing surface atoms (or some combination of both). Which 

mechanism of expanding the surface area actually occurs will depend on the 

geometry, constitution, and boundary conditions of the system. On a solid 

nanocrystal, for example, one might expect some stretching of low-energy crystal 

faces as a trade-off against the extension of high-energy crystal faces. Indeed, 

stretching might well be central to the functioning of these catalytic surfaces. 

 

The Terminology of Surface Tension 

In general, the term “surface tension” (interfacial tension) is not the name of a single 

parameter. Actually it is the generic name for a large set of parameters that describe 

how various different thermodynamic potentials vary with small changes of surface 

area, given certain constraints on a system. These constraints (constant temperature, 

constant pressure, constant volume…) may be applied externally or may arise 

spontaneously inside the system due to unavoidable couplings between parameters. 

(In the latter case, the couplings are sometimes referred to as “equations of state”). 

Likewise, the term “surface energy” is not the name of a single parameter. It is the 

generic name for a large set of different parameters that describe how different 
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thermodynamic potentials vary with large changes of surface area, given certain 

constraints on the system. 

In what follows we arbitrarily restrict attention to one thermodynamic potential (the 

Gibbs potential) and two external constraints (constant temperature and constant 

pressure).  

At constant temperature and pressure, and in the absence of a surface excess 

electric charge, the thermodynamics of surfaces can be treated as a purely 

mechanical problem. Indeed, under these circumstances, and assuming an isotropic 

solid, the surface excess Gibbs energy 𝐺 is a function of one variable only, namely 

the surface area 𝐴. Thus 

𝐺 = 𝐺(𝐴) 

(3) 

The existence of this simple relationship suggests that it might be useful to define a 

surface excess Gibbs energy density 𝐺̂(𝐴) as the quotient 

𝐺̂(𝐴)  =   
𝐺(𝐴)

𝐴
 

(4) 

(where the surface area 𝐴 refers to a flat surface).  

The motivation for this approach is the hope is that, in any given system, 𝐺̂(𝐴) will 

turn out to be a surface area-independent (intensive) parameter characteristic of the 

surface as a whole. Unfortunately, this hope will certainly be forlorn if elastic forces 

exist inside the surface. For this reason, the presence or absence of elastic forces 

must be determined by experiment. 

Before proceeding to the theory, we note that the macroscopic quotient referred to 

as the “surface excess Gibbs energy density” has the same units (J m−2) as the 

microscopic derivative referred to as the “surface tension” (interfacial tension). It is 

therefore easy to get them confused, and, to avoid this, we now briefly digress to see 

how they can be distinguished. 

 

The Definition of Surface Tension 

In the present work, the surface tension (which, in the most general case, may be 

surface  area-dependent) is defined as the partial derivative of the surface excess 

Gibbs energy (J) with respect to an infinitesimal increment of surface area (m2) at 

constant 𝑇 and 𝑃, as given in Eq.(2). As a partial derivative of a thermodynamic 

potential with respect to an extensive variable, the surface tension is a “generalized 
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force”. Like a classical force, this generalized force must always be balanced by an 

opposing force at equilibrium, usually a body force. Further, since the surface excess 

Gibbs energy arises from the difference in Gibbs energy between the total system 

before interface formation, and the total system after interface formation, the surface 

tension must be considered to arise (to a greater or lesser extent) from the 

interactions of all the particles in the system. 

By substitution we immediately find that  

𝛾(𝐴)   =   (
𝜕𝐺(𝐴)

𝜕𝐴
)

T,P
 =   (

𝜕[𝐴𝐺̂(𝐴)]

𝜕𝐴
)

T,P

 =   [𝐺̂(𝐴) + 𝐴 (
𝜕𝐺̂(𝐴)

𝜕𝐴
)]

T,P

  

 (5) 

where 𝐺̂(𝐴) is the surface excess Gibbs energy density. From Eq. (5) we note that, 

under the specified constraints of constant temperature and pressure, the 

microscopic derivative “surface tension” 𝛾(𝐴) depends upon two non-independent 

terms containing the macroscopic quotient 𝐺̂(𝐴). The first term is 𝐺̂(𝐴) itself, while 

the second term involves the derivative of 𝐺̂(𝐴) with respect to surface area. 

We emphasize that 𝐺̂(𝐴) is not necessarily a constant. However, it is also obvious by 

inspection that a great simplification is achieved if 

𝐺̂(𝐴) = constant 

(6) 

In that case 

(
𝜕𝐺̂

𝜕𝐴
)

T,P

 =   0    

(7) 

and the surface tension 𝛾 and the surface excess Gibbs energy density 𝐺̂ become 

identical.  

Consider, however, what happens when the surface tension 𝛾 is a function of 

surface area 𝐴. Then by analogy with Young’s modulus we can define a modulus of 

surface tension 𝐸(𝐴) such that 

𝐸(𝐴)   =   𝐴 (
𝜕𝛾

𝜕𝐴
)

T,P
 

(8) 
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This parameter measures the mechanical stiffness of a surface. If it has a finite value 

then we are justified in concluding that the surface contains at least one elastic force, 

in addition to the normal contractive force due to the termination of the bulk phase. 

The possibility of a finite modulus of surface tension means that two different 

definitions of surface tension are possible. One definition includes the possible 

existence of elasticity, and the other doesn't. For avoidance of ambiguity, let us state 

here that we consider the surface tension to be the coefficient 

𝛾T,P                                         (DEFINITION 1) 

which applies universally to both solids and liquids, and does allow for the inclusion 

of elastic behaviour. We do NOT consider surface tension to be the coefficient 

𝛾T,P,(∂γ/∂A=0)                                 (DEFINITION 2) 

which applies only to ideal liquids. In the case of DEFINITION 1, “stretching” or 

“compression” of the surface is permitted by the formalism, such that the change of 

surface area may result in a change of surface excess Gibbs energy density 𝐺̂. In 

the case of DEFINITION 2, elastic stretching or elastic compression of the surface is 

not permitted by the formalism, so the change of surface area must be such that the 

new area has precisely the same surface properties as the old area. In physical 

terms, this means that DEFINITION 2 applies only to ideal (zero-modulus-of-surface-

tension) liquids. 

In a well-known paper [9], Shuttleworth derived an equation analogous to Eq. (5), 

except that he used the surface excess Helmholtz energy density 𝐹̂, rather than 𝐺̂.  

Interestingly, he noted that his definition of the surface tension was true “no matter 

what the manner of deformation of the surface”. [That is, he was also using 

DEFINITION 1.] 

Although Eq. (5) is merely the mathematical elaboration of one possible definition of 

surface tension, it does emphasize an important physical fact ─ the surface tension 𝛾 

(according to DEFINITION 1) is not necessarily equal to the surface excess Gibbs 

energy density 𝐺̂. As discussed above, the values of 𝛾 and 𝐺̂ coincide only when the 

surface excess Gibbs energy density 𝐺̂ is independent of surface area. Although 

independence is assured in the case of a hypothetical liquid surface lacking long-

range order, it may happen that both 𝛾 and 𝐺̂ are functions of 𝐴 on real liquid 

surfaces. Indeed, this is commonly the case in the presence of lipid films, and on 

solid surfaces.  

 

Surface Stress 
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In the expansion of 𝛾(𝐴) given by Eq. (5), it may be observed that both terms on the 

right-hand side are functions of area 𝐴. Here we seek a different expansion of 𝛾(𝐴) 

of the form  

𝛾(𝐴) =  𝐺̂1 + 𝐺̂2(𝐴) 

(9) 

such that the first term 𝐺̂1 is independent of 𝐴, and the second term 𝐺̂2(𝐴) is 

dependent on 𝐴. Since surface stress involves the deformation of surface, we 

identify 𝐺̂1 as the stress-free component of the surface tension, and 𝐺̂2(𝐴) as the 

stress-containing component of the surface tension.  

To begin, we first expand 𝐺̂(𝐴) as a MacLaurin series 

𝐺̂(𝐴) =  𝐺̂(0) +  𝐴𝐺̂′(0)  +  𝐴2
𝐺̂′′(0)

2!
 +  … + 𝐴𝑛

𝐺̂(𝑛)(0)

𝑛!
 +  …  

(10) 

Then we insert the series into Eq. (5) and collect terms, so that 

𝛾(𝐴) =  𝐺̂(0) +  𝐴[𝐺̂′(0) +  𝐺̂′(𝐴)]  + ∑ 𝐴𝑛  
𝐺̂(𝑛)(0)

𝑛!

∞

𝑛=2

  

(11) 

[Note that 𝛾(𝐴) is assumed to be isotropic, which removes the need for treating it as 

a tensor.] Now retaining only terms up to first order in 𝐴, we obtain the approximation 

𝛾(𝐴) ≈  𝐺̂(0) +  𝐴[𝐺̂′(0) +  𝐺̂′(𝐴)]  

(12) 

Finally, comparing this result term-by-term with Eq. (9) reveals that 𝐺̂1 = 𝐺̂(0) and 

that  

𝐺̂2(𝐴)  ≈  𝐴[𝐺̂′(0) + 𝐺̂′(𝐴)]  

 (13) 

Since 𝐺̂2(𝐴) is the stress-containing component of the surface tension, we here 

identify it as the surface stress 𝜏(𝐴).  

By differentiation of Eq. (9) we readily find that 

𝐸(𝐴)  =   𝐴 (
𝜕𝛾

𝜕𝐴
)

T,P
=  𝐴 (

𝜕𝜏

𝜕𝐴
)

T,P
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 (14) 

This proves that, to first order in 𝐴, the modulus of surface tension and the modulus 

of surface stress are equal. However, the surface tension and the surface stress are 

not themselves equal, because they differ by a constant of integration equal to the 

stress-free component of the surface tension 𝐺̂1. Whether 𝐺̂1 and  𝐺̂2(𝐴) can be 

partitioned experimentally is an open question. 

The validity of retaining only the linear terms in the MacLaurin expansion is also an 

open question, although comparison with Hooke’s Law suggests that such an 

approximation might be reasonable.   

 

Charged Surfaces 

The presence of a surface excess electric charge greatly complicates the 

thermodynamic analysis of surfaces. For the case of a charged surface it is 

necessary to take into account the fact that the surface excess Gibbs energy 𝐺 is 

now a function of two variables, the surface area 𝐴 and the surface excess charge 𝑄. 

Thus 

𝐺 = 𝐺(𝐴, 𝑄) 

(15) 

We assume that, in general, the surface area 𝐴 and the surface excess charge 𝑄 

may (or may not) be coupled, depending on the type of perturbation that the surface 

is subjected to. For example, if the surface area is increased at constant surface 

excess charge density 𝑞 (a process similar to adding an extra tile to a set of pre-

existing tiles) then 𝐴 and 𝑄 are linearly related; but if an existing tile is mechanically 

stretched at fixed 𝑄, then 𝐴 and 𝑄 may not be related at all. To accommodate these 

extreme possibilities within one mathematical framework, we must write the surface 

excess charge density either explicitly as 

𝑞 = 𝑞(𝐴, 𝑄) 

(16) 

or implicitly as 

𝐴 = 𝐴(𝑞, 𝑄) 

(17) 

We then evaluate the total derivatives 

d𝐺 =   (
𝜕𝐺

𝜕𝐴
)

Q
d𝐴  +  (

𝜕𝐺

𝜕𝑄
)

A

d𝑄  
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(18) 

and 

d𝐴 =   (
𝜕𝐴

𝜕𝑞
)

Q

d𝑞  +   (
𝜕𝐴

𝜕𝑄
)

q

d𝑄  

(19) 

Substituting Eq. (19) into Eq. (18) then gives the expression 

d𝐺 =   (
𝜕𝐺

𝜕𝑞
)

Q

d𝑞 +   (
𝜕𝐺

𝜕𝐴
)

Q
(

𝜕𝐴

𝜕𝑄
)

q

d𝑄 +   (
𝜕𝐺

𝜕𝑄
)

A

d𝑄 

 (20) 

Although complicated, this result is exact. It can be simplified in various ways, and 

some particular cases can be derived from it by taking appropriate limits. For 

example, at constant surface excess charge 𝑄 we have d𝑄 = 0 and 

d𝐺 =   (
𝜕𝐺

𝜕𝑞
)

Q

d𝑞 

 (21) 

Forming the derivative with respect to surface area at constant 𝑄 then yields 

(
𝜕𝐺

𝜕𝐴
)

Q
=   (

𝜕𝐺

𝜕𝐴
)

Q

(
𝜕𝐴

𝜕𝑞
)

Q

(
𝜕𝑞

𝜕𝐴
)

Q
 =  𝛾Q 

 (22) 

Alternatively, at constant surface excess charge density 𝑞 we have 𝑑𝑞 = 0 and 

d𝐺 =   (
𝜕𝐺

𝜕𝐴
)

Q
(

𝜕𝐴

𝜕𝑄
)

q

d𝑄 +   (
𝜕𝐺

𝜕𝑄
)

A

d𝑄 

 (23) 

Forming the derivative with respect to surface area at constant 𝑞 yields 

(
𝜕𝐺

𝜕𝐴
)

q
 =   (

𝜕𝐺

𝜕𝐴
)

Q
(

𝜕𝐴

𝜕𝑄
)

q

(
𝜕𝑄

𝜕𝐴
)

q
 +   (

𝜕𝐺

𝜕𝑄
)

A

(
𝜕𝑄

𝜕𝐴
)

q
 

=   (
𝜕𝐺

𝜕𝐴
)

Q
  +   (

𝜕𝐺

𝜕𝑄
)

A

(
𝜕𝑄

𝜕𝐴
)

q
 

=  𝛾Q    +   (
𝜕𝐺

𝜕𝑄
)

A

(
𝜕𝑄

𝜕𝐴
)

q
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=   𝛾q  

(24) 

Finally, combining the above results, we readily obtain 

𝛾q   =  𝛾Q    +   (
𝜕𝐺

𝜕𝑄
)

A

(
𝜕𝑄

𝜕𝐴
)

q
 

        =  𝛾Q    +   𝐸 𝑞A                   

(25) 

Here 𝛾Q is the surface tension measured at constant charge, and 𝛾q is the surface 

tension measured at constant charge density. 𝐸 is the electrode potential measured 

from the point of zero charge, and 𝑞A is the charge density. 

 

The Surface Analogs of the Maxwell Relations 

Relations between the second derivatives of thermodynamic potentials are called 

Maxwell relations. Due to the large number of possible thermodynamic potentials 

there are a large number of Maxwell relations. Even for a system having just two 

degrees of freedom there are 4 thermodynamic potentials 𝐹, 𝐺, 𝐻, and 𝑈, and four 

Maxwell relations. For three degrees of freedom this rises to 8 thermodynamic 

potentials, and for four degrees of freedom there are 16 thermodynamic potentials. 

In practice, it turns out that most Maxwell relations are of little use. A few, however, 

are exceptionally useful. 

For two degrees of freedom, for a surface that is subject to change by hydrostatic 

work only (i.e. 𝑃𝑉 work only), the differential forms of 𝐹, 𝐺, 𝐻, and 𝑈 are 

d𝐹 =  −𝑆d𝑇 − 𝑃d𝑉 

d𝐺 =  −𝑆d𝑇 + 𝑉d𝑃 

d𝐻 =   𝑇d𝑆 + 𝑉d𝑃 

d𝑈 =   𝑇d𝑆 − 𝑃d𝑉 

(26) 

These equations apply to any surface having a constant surface area 𝐴 and constant 

number of adsorbed charged species 𝑁.  

Because the potentials 𝐹, 𝐺, 𝐻, and 𝑈 are functions of state, their differentials are 

exact. And as we would expect, each potential has a different pair of variables as its 

natural variables:  
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𝐹 = 𝐹(𝑇, 𝑉) 

𝐺 = 𝐺(𝑇, 𝑃) 

𝐻 = 𝐻(𝑆, 𝑃) 

𝑈 = 𝑈(𝑆, 𝑉) 

(27) 

If any one of these potentials is known explicitly in terms of its natural variables then 

the system is fully defined. Further, if we differentiate a second time, we get the 

surface analogs of the bulk phase Maxwell relations 

𝜕2𝐹

𝜕𝑇𝜕𝑉
 =  − (

𝜕𝑃

𝜕𝑇
)

V
 =  − (

𝜕𝑆

𝜕𝑉
)

T
  

𝜕2𝐺

𝜕𝑇𝜕𝑃
 =  + (

𝜕𝑉

𝜕𝑇
)

P
 =  − (

𝜕𝑆

𝜕𝑃
)

T
  

𝜕2𝐻

𝜕𝑆𝜕𝑃
 =  + (

𝜕𝑉

𝜕𝑆
)

P
 =  + (

𝜕𝑇

𝜕𝑃
)

S
  

𝜕2𝑈

𝜕𝑆𝜕𝑉
 =  − (

𝜕𝑃

𝜕𝑆
)

V
 =  + (

𝜕𝑇

𝜕𝑉
)

S
  

(28) 

These relations are valid at constant surface area 𝐴 and constant number of 

adsorbed charged species 𝑁. It is notable that the natural variables appear 

automatically in the denominators on the left-hand side. Further relations, in which 

changes occur by variation of the surface area 𝐴 or the number of adsorbed charged 

species 𝑁, are readily obtained by substitution, as we shall demonstrate below. 

 

The Electrochemical Potential 

Electrochemical potential is not the same thing as electrostatic potential. 

Electrochemical potential is the total work (chemical and electrical) done in bringing 

a charged species (such as an electron or ion) from infinity to a specified location. 

Thus we write 

𝜇̅i  =   𝜇i + 𝑧𝑒𝜙 

(29) 

where 𝜇̅i is the electrochemical potential (J) of species 𝑖, 𝜇i is the chemical potential 

(J) of species 𝑖, 𝑧 is the elementary charge number (dimensionless) of species 𝑖, 𝑒 is 
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the elementary charge (C), and 𝜙 is the local electrostatic potential (Galvani 

potential). At thermodynamic equilibrium, it is the electrochemical potential that is 

constant across a system, not the electrostatic potential. In the special case of an 

uncharged species, 𝑧 = 0 and so 𝜇̅i  =   𝜇i.  

Because it contributes to the Gibbs energy, the electrochemical potential can also be 

expressed as a partial derivative of the Gibbs energy (J) with respect to an 

infinitesimal increment of the number of charged species 𝑁 at constant 𝑇, and 𝑃.  

𝜇̅i  =   (
𝜕𝐺

𝜕𝑁
)

T,P
 

(30) 

Finally, and most importantly for the present work, we are interested in the case 

where the electrode potential 𝐸 is treated as an independent variable under the 

control of an experimenter. Assuming the electrode/solution interface is “ideally 

polarizable”, then the chemical potentials in each bulk phase are constants, and 

therefore any change in electrode potential 𝐸 between the bulk phases necessarily 

induces a change in electrochemical potential 𝜇̅i of magnitude 

𝜕𝜇̅i  =   𝑧i𝑒𝜕𝐸 

(31) 

This equation is in full agreement with Eqs. (4.3.5) and (4.3.6) of Trasatti and 

Parsons [10].  

In the vast majority of electrochemical systems, a change in electrode potential 

between an electrode and a solution has the effect of driving charge carriers across 

the electrode/solution interface. In the present work, however, we restrict attention to 

the special case of an “Ideally Polarizable Electrode”, as defined by Koenig [11]. This 

is a two-phase system composed of an electronic conductor in contact with an ionic 

conductor, such that each type of charge carrier is confined to one phase only. In 

this situation, the transfer of charge carriers across the interface is impossible, and 

instead they simply pile up at the interface. As is well known, a few real electrodes 

(such as mercury and platinum) are nearly “ideally polarizable” at room temperature 

over certain ranges of applied potential in certain electrolyte solutions. 

 

The Gokhshtein Relations 

In his book “Surface Tension of Solids and Adsorption” (published in Russian) A. Ya. 

Gokhshtein introduced two new relations into surface thermodynamics, valid at 

constant temperature and pressure, having the form 
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+ (
𝜕𝐸

𝜕𝐴
)

Q
 =  + (

𝜕𝛾

𝜕𝑄
)

A

                         G1  

and 

+ (
𝜕𝛾

𝜕𝐸
)

A
= − (𝑞̂ + 𝐴

𝜕𝑞̂

𝜕𝐴
)

E
                 G2 

Here 𝐸 is the electrode potential, 𝐴 is the surface area, 𝛾 is the surface tension, 𝑄 is 

the surface charge, and 𝑞̂ is the surface charge density [6]. These relations were 

then used to analyse elastic changes in the surface of solids subject to 

electrochemical perturbations (the “estance” method). More recently, the logical 

status of G1 and G2 has been disputed in the scientific literature [12-21]. To help 

clarify these issues, I here provide a detailed derivation of the Gokhshtein Relations 

via the Gibbs Potential. [Gokhshtein himself derived his eponymous relations by 

means of the Landau and Helmholtz potentials.] It should also be noted that a short 

derivation of the Gokhshtein relations, based on an assumed form of the Gibbs 

Potential, has previously been published by Valincius [22]. The same author has also 

reported some very interesting experimental results [23]. 

For a system involving surface charge and surface tension, the mathematical 

analysis is rather complex. However, it can be greatly simplified if only two degrees 

of freedom are allowed. In order to contrive this situation, we proceed in the following 

way. First, we assume that only one species is adsorbed, so that the electrochemical 

potentials of all the other species are unaffected by the surface. Second, we assume 

that the solvent is inert, and that surface dipole effects are absent. This allows us to 

write an equation for the differential of the internal energy having only five degrees of 

freedom: 

d𝑈 =   𝑇d𝑆 − 𝑃d𝑉 + 𝛾d𝐴 + 𝜇id𝑁 + 𝜙d𝑄 

 (32) 

If we now recall Faraday’s Law, which states that 

d𝑄

d𝑁
 =   𝑧𝑒 

(33) 

then 

d𝑄 = 𝑧𝑒d𝑁   

(34) 

Eq. (34) is an equation of state that describes the coupling between charge number 

and species number for ions. Due to the fact that charge is always incarnated in 
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matter, it is not possible to change the number of charges without also changing the 

number of charged species. 

Now substituting for d𝑄 yields, 

d𝑈 =   𝑇d𝑆 − 𝑃d𝑉 + 𝛾d𝐴 + [ 𝜇id𝑁 + 𝑧𝑒𝜙d𝑁 ] 

 (35) 

Finally, collecting the terms inside the bracket together, we can decrease the number 

of degrees of freedom by one: 

d𝑈 =   𝑇d𝑆 − 𝑃d𝑉 + 𝛾d𝐴 + [ 𝜇̅id𝑁 ] 

(36) 

where 𝜇̅i is the electrochemical potential of the adsorbed species. (This idea due to 

Guggenheim [24].) 

Because entropy and volume are difficult variables to control, we next make the 

Legendre transform 

𝐺 =   𝑈 − 𝑇𝑆 + 𝑃𝑉 

(37) 

This yields 

d𝐺 =  −𝑆d𝑇 + 𝑉d𝑃 + 𝛾d𝐴 + 𝜇̅id𝑁 

(38) 

At this stage we still have four degrees of freedom. However, it is not difficult to keep 

the temperature and pressure constant. In that case d𝑇 = 0 and d𝑃 = 0, and 

d𝐺 =  𝛾d𝐴 + 𝜇̅id𝑁    (at constant 𝑇 and 𝑃) 

(39) 

Thus we have achieved our goal of a system controlled by just two degrees of 

freedom (𝐴 and 𝑁). In summary, at constant temperature and pressure, the relevant 

thermodynamic potential is the Gibbs potential 𝐺, and the independent variables are 

the surface area 𝐴 and the number of adsorbed charged species 𝑁. 

If we now recall that, for an ideally polarizable electrode/solution interface, 

𝜕𝜇̅i  =   𝑧i𝑒𝜕𝐸 

 (40) 
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where 𝜇̅i is the electrochemical potential of the charged species and 𝐸 is the 

electrode potential, then the corresponding Maxwell relations may be written (at 

constant 𝑇 and 𝑃), 

+ (
𝜕𝐸

𝜕𝐴
)

Q
 =  + (

𝜕𝛾

𝜕𝑄
)

A

                   M1  

+ (
𝜕𝛾

𝜕𝐸
)

A
=   − (

𝜕𝑄

𝜕𝐴
)

E
                    M2  

− (
𝜕𝐸

𝜕𝛾
)

Q

 =  + (
𝜕𝐴

𝜕𝑄
)

γ

                    M3  

+ (
𝜕𝑄

𝜕𝛾
)

E

 =   + (
𝜕𝐴

𝜕𝐸
)

γ
                    M4  

We see immediately that M1 is also the first Gokhshtein relation G1, and M2 is a 

generalization of the Lippmann equation. [The conventional Lippmann equation 

assumes that (𝜕𝑄/𝜕𝐴)E is a constant charge density, 𝑞A, even though this is not true 

in general.] 

Defining a surface excess charge density 𝑞̂ (which is not necessarily a constant 

independent of 𝐴) we have  

𝑞̂  =   
𝑄(𝐴)

𝐴
 

(41) 

so that 

𝜕𝑄 =   𝐴𝜕𝑞̂ + 𝑞̂𝜕𝐴 

(42) 

Substituting into M2 yields 

+ (
𝜕𝛾

𝜕𝐸
)

A
= − (𝑞̂ + 𝐴

𝜕𝑞̂

𝜕𝐴
)

E
  

(43) 

and we have now arrived at the second Gokhshtein relation G2. The final term is the 

modulus of surface excess charge density, and tells us how much the surface 

excess charge density varies with surface area at constant potential. 

 

Conclusions 
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The terminology and definition of surface tension have been discussed. Under 

conditions of constant temperature and pressure, the surface tension has been 

defined as the partial derivative of the surface excess Gibbs energy with respect to 

an infinitesimal increment of surface area. This definition differs from the IUPAC 

definition [25], which states that surface tension is “the work required to increase a 

surface area divided by that area”. In fact, the latter is the definition of the surface 

excess Gibbs energy density 𝐺̂(𝐴). 

In addition, a new formula for surface stress has been developed based upon a first 

order expansion of surface tension 𝛾(𝐴) with respect to area. 

Finally, the Gokhshtein relations have been derived from the Gibbs potential, based 

on the assumption that the electrode/solution interface is ideally polarizable. The 

Gokhshtein relations are thereby shown to be rigorous. 
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