figshare
Browse
rsob180108_si_011.xlsx (13.62 kB)

Supplementary Table 2 from Phosphorylation of Parkin at serine 65 is essential for its activation in vivo

Download (13.62 kB)
dataset
posted on 2018-11-08, 03:44 authored by Thomas G. McWilliams, Erica Barini, Risto Pohjolan-Pirhonen, Simon P. Brooks, François Singh, Sophie Burel, Kristin Balk, Atul Kumar, Lambert Montava-Garriga, Alan R. Prescott, Sidi Mohamed Hassoun, François Mouton-Liger, Graeme Ball, Rachel Hills, Axel Knebel, Ayse Ulusoy, Donato A. Di Monte, Jevgenia Tamjar, Odetta Antico, Kyle Fears, Laura Smith, Riccardo Brambilla, Eino Palin, Miko Valori, Johanna Eerola-Rautio, Pentti Tienari, Olga Corti, Stephen B. Dunnett, Ian G. Ganley, Anu Suomalainen, Miratul M. K. Muqit
Mutations in PINK1 and Parkin result in autosomal recessive Parkinson's disease (PD). Cell culture and in vitro studies have elaborated the PINK1-dependent regulation of Parkin and defined how this dyad orchestrates the elimination of damaged mitochondria via mitophagy. PINK1 phosphorylates ubiquitin at serine 65 (Ser65) and Parkin at an equivalent Ser65 residue located within its N-terminal ubiquitin-like domain, resulting in activation; however, the physiological significance of Parkin Ser65 phosphorylation in vivo in mammals remains unknown. To address this, we generated a Parkin Ser65Ala (S65A) knock-in mouse model. We observe endogenous Parkin Ser65 phosphorylation and activation in mature primary neurons following mitochondrial depolarization and reveal this is disrupted in ParkinS65A/S65A neurons. Phenotypically, ParkinS65A/S65A mice exhibit selective motor dysfunction in the absence of any overt neurodegeneration or alterations in nigrostriatal mitophagy. The clinical relevance of our findings is substantiated by the discovery of homozygous PARKIN (PARK2) p.S65N mutations in two unrelated patients with PD. Moreover, biochemical and structural analysis demonstrates that the ParkinS65N/S65N mutant is pathogenic and cannot be activated by PINK1. Our findings highlight the central role of Parkin Ser65 phosphorylation in health and disease.

History

Usage metrics

    Open Biology

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC