Supplementary Material for: Nitric Oxide Pathway and Proliferation of Neural Progenitors in the Neonatal Rat

Several lines of evidence demonstrate that inhaled nitric oxide (iNO) not only acts locally on the pulmonary vasculature but also has remote effects on the mature and developing brain under basal or pathological conditions by modulating cerebral blood flow and microvascularization, white matter maturation, inflammation, and subsequent brain repair. Previously, consistent studies demonstrated that increased levels of guanosine 3′,5′ cyclic monophosphate (cGMP), the main effector of biological effect induced by nitric oxide (NO), significantly augment proliferation and neuronal differentiation of adult neural progenitor cells (NPCs). In the present study, we ask the question whether iNO could promote the proliferation of NPCs in the uninjured developing brain. We first reported that iNO exposure at a concentration of 20 ppm during the first 7 days of life was associated with a significant but transient elevation of brain cGMP concentration 2 h after the onset of iNO exposure and a subsequent increase in myelin content of the developing white matter at postnatal day (P) 10. Using BrDu labelling and colabelling with specific cell-type markers we found that iNO exposure of rat pups results in an increased NPC proliferation in several layers of the subventricular zone (SVZ) at both early (30 h) and late (P7) time points. These proliferating NPCs were found to be sustainably viable and subsequently differentiated into oligodendroglial cells in the developing white matter and cortex. We also found that NG2 immunoreactivity around vessel walls, labeling pericyte cells, was increased in NO-exposed rat pups in the periventricular SVZ. In conclusion, iNO appears to act on oligodendrocyte progenitor cells, leading to increased density of mature oligodendrocytes and myelin content in the immature rat brain.