Supplementary Material for: Galectin-9 Produced by Intestinal Epithelial Cells Enhances Aldehyde Dehydrogenase Activity in Dendritic Cells in a PI3K- and p38-Dependent Manner

Intestinal epithelial cells (IEC) drive regulatory T cell (T<sub>reg</sub>) responses by promoting the differentiation of aldehyde dehydrogenase (ALDH)-expressing CD103<sup>+</sup> dendritic cells (DC). Apical stimulation of TLR9 by CpG DNA on IEC supports galectin-9 expression by IEC, which is promoted by short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides (GF). While galectin-9 can induce the maturation of monocyte-derived DC (moDC), the contribution of galectin-9 on the induction of ALDH activity in DC is not known. To this end, DC were stimulated with galectin-9, and ALDH activity and the expression of CD103 were assessed. ALDH activity was increased by moDC exposed to galectin-9, while the expression of CD103 remained unaltered. Galectin-9 secreted by IEC apically exposed to CpG DNA and GF enhanced ALDH activity, but not CD103 expression by moDC, which was abrogated upon galectin-9 neutralization. Similar observations were found in murine GM-CSF-cultured bone marrow-derived DC (BMDC). Using Flt3L-cultured BMDC and ex vivo murine splenic DC, it was observed that galectin-9 only enhanced ALDH activity in the presence of GM-CSF in CD103<sup>-</sup> cells. The induction of ALDH activity in BMDC was dependent on p38 and PI3K signaling. These data indicate a novel role for galectin-9 in modulating innate immunity by inducing ALDH activity in DC.