Supplementary Material for: Extravascular CD3+ T Cells in Brains of Alzheimer Disease Patients Correlate with Tau but Not with Amyloid Pathology: An Immunohistochemical Study

<p><b><i>Background:</i></b> Strong genetic and epidemiological evidence points to a crucial role of the immune system in the development of Alzheimer disease (AD). CD3+ T lymphocytes have been described in brains of postmortem AD patients and in transgenic models of AD-like cerebral amyloidosis and tau pathology. However, the occurrence of T cells in AD brains is still controversial; furthermore, the relationship between T cells and hallmarks of AD pathology (amyloid plaques and neurofibrillary tangles) remains to be established. <b><i>Objectives:</i></b> We have studied the occurrence of T cells in postmortem hippocampi and mid frontal gyrus (MFG) samples of AD patients (Braak stage V-VI) and nondemented control subjects and correlated it with amyloid and tau pathology burden. <b><i>Methods:</i></b> Confocal microscopy and bright-field immunohistochemistry were used to identify brain-associated T cells. Extravascular CD3+ T cells were quantified and compared to nondemented controls. In addition, numbers of extravascular CD3+ T cells were correlated with amyloid (6E10 staining) and tau pathology (AT8 staining) in the same sections. <b><i>Results:</i></b> Several CD3+, extravascular T cells were observed in the brains of AD patients, mostly of the CD8+ subtype. AD hippocampi harbored significantly increased numbers of extravascular CD3+ T cells compared to nondemented controls. CD3+ T cells significantly correlated with tau pathology but not with amyloid plaques in AD samples. <b><i>Conclusions:</i></b> Our data support the notion of T-cell occurrence in AD brains and suggest that, in advanced stages of AD, T-cell extravasation is driven by tau-related neurodegenerative changes rather than by cerebral amyloidosis. T cells could be crucial for driving the amyloid-independent phase of the AD pathology.</p>