Supplementary Material for: Effect of Experimental Thyrotoxicosis onto Blood Coagulation: A Proteomics Study

<p><b><i>Background:</i></b> Hyperthyroidism is known to<b> </b>induce a hypercoagulable state. It stimulates plasma levels of procoagulative factors and reduces fibrinolytic activity. So far most of the data have been derived from patients with endogenous hyperthyroidism with a wide variability in the underlying pathogenesis and severity of the disease. <b><i>Objectives:</i></b> In this study we experimentally induced thyrotoxicosis in healthy volunteers to explore the effects of thyroxine excess on the plasma proteome. Using a shotgun proteomics approach, the abundance of plasma proteins was monitored before, during and after thyrotoxicosis. <b><i>Methods:</i></b> Sixteen healthy male subjects were sampled at baseline, 4 and 8 weeks under 250 µg/day thyroxine p.o., as well as 4 and 8 weeks after stopping the application. Plasma proteins were analyzed after depletion of 6 high-abundance proteins (MARS6) by LC-ESI-MS/MS mass spectrometry. Mass spectrometric raw data were processed using a label-free, intensity-based workflow. Subsequently, the linear dependence between protein abundances and fT<sub>4</sub> levels were calculated using a Pearson correlation. <b><i>Results:</i></b> All subjects developed biochemical thyrotoxicosis, and this effect was reversed within the first 4 weeks of follow-up. None of the volunteers noticed any subjective symptoms. Levels of 10 proteins involved in the coagulation cascade specifically correlated with fT<sub>4</sub>, supporting an influence of thyroid hormone levels on blood coagulation even at nonpathological levels. <b><i>Conclusions:</i></b> The results suggest that experimental thyrotoxicosis exerts selective and specific thyroxine-induced effects on coagulation markers. Our study design allows assessment of thyroid hormone effects on plasma protein levels without secondary effects of other diseases or therapies.</p>