Supplementary Material for: Diagnosis of Neonatal Sepsis by Broad-Range 16S Real-Time Polymerase Chain Reaction

Background: The standard diagnostic test (blood culture) for suspected neonatal sepsis has limitations in sensitivity and specificity, and 16S polymerase chain reaction (PCR) has been suggested as a new diagnostic tool for neonatal sepsis. Objectives: To develop and evaluate a new real-time PCR method for detection of bacterial DNA in blood samples collected from infants with suspected neonatal sepsis. Methods: Immediately after blood culture, a study sample of 0.5–1.0 ml whole blood was collected and used for a novel 16S real-time PCR assay. All positive samples were sequenced. Detailed case studies were performed in all cases with conflicting results, to verify if PCR could detect pathogens in culture negative sepsis. Results: 368 samples from 317 infants were included. When compared with blood culture, the assay yielded a sensitivity of 79%, a specificity of 90%, a positive predictive value of 59%, and a negative predictive value of 96%. Seven of the 31 samples with a positive PCR result and a negative blood culture had definite or suspected bacterial sepsis. In five samples, PCR (but not blood culture) could detect a pathogen that was present in a blood culture collected more than 24 h prior to the PCR sample. Conclusions: This study presents an evaluation of a new real-time PCR technique that can detect culture-positive sepsis, and suggests that PCR has the potential to detect bacteria in culture-negative samples even after the initiation of intravenous antibiotics.