Supplementary Material for: Cutaneous or Respiratory Exposures to Peanut Allergens in Mice and Their Impacts on Subsequent Oral Exposure

<b><i>Background:</i></b> Recent data suggested that non-gastrointestinal exposure can lead to sensitisation to food allergens. We thus assessed the immune impact of respiratory or cutaneous exposure to peanut proteins on non-altered epithelium and investigated the effect of such pre-exposure on subsequent oral administration of peanut. <b><i>Methods:</i></b> BALB/cJ<b> </b>mice were exposed to purified Ara h 1 or to a non-defatted roasted peanut extract (PE) by simple deposit of allergens solutions on non-altered skin or in the nostrils. Exposures were performed 6 times at weekly intervals. Pre-exposed mice then received intra-gastric administrations of PE alone or in the presence of the Th2 mucosal adjuvant cholera toxin (CT). The specific humoral and cellular immune response was assessed throughout the protocol. <b><i>Results:</i></b> Both<b> </b>cutaneous and respiratory exposures led to the production of specific IgG1. Local and systemic IL-5 and IL-13 production were also evidenced, demonstrating activation of specific Th2 cells. This effect was dose-dependent and most efficient via the respiratory route. Moreover, these pre-exposures led to the production of specific IgE antibodies after gavage with PE, whatever the presence of CT. <b><i>Conclusions:</i></b> Cutaneous or respiratory exposures to peanut induce Th2 priming in mice. Moreover, pre-exposures promote further sensitisation via the oral route without the use of CT; this proposes a new adjuvant-free experimental model of sensitisation to food that may reflect a realistic exposure pattern in infants. These results also suggest that non-gastrointestinal peanut exposure should be minimised in high-risk infants, even those with non-altered skin, to potentially reduce allergic sensitisation to this major food allergen.