Supplementary Material for: Could Inbred Cases Identified in GWAS Data Succeed in Detecting Rare Recessive Variants Where Affected Sib-Pairs Have Failed?

To detect fully penetrant rare recessive variants that could constitute Mendelian subentities of complex diseases, we propose a novel strategy, the HBD-GWAS strategy, which can be applied to genome-wide association study (GWAS) data. This strategy first involves the identification of inbred individuals among cases using the genome-wide SNP data and then focuses on these inbred affected individuals and searches for genomic regions of shared homozygosity by descent that could harbor rare recessive disease-causing variants. In this second step, analogous to homozygosity mapping, a heterogeneity lod-score, HFLOD, is computed to quantify the evidence of linkage provided by the data. In this paper, we evaluate this strategy theoretically under different scenarios and compare its performances with those of linkage analysis using affected sib-pair (ASP) data. If cases affected by these Mendelian subentities are not enriched in the sample of cases, the HBD-GWAS strategy has almost no power to detect them, unless they explain an important part of the disease prevalence. The HBD-GWAS strategy outperforms the ASP linkage strategy only in a very limited number of situations where there exists a strong allelic heterogeneity. When several rare recessive variants within the same gene are involved, the ASP design indeed often fails to detect the gene, whereas, by focusing on inbred individuals using the HBD-GWAS strategy, the gene might be detected provided very large samples of cases are available.