figshare
Browse
rspb20161032_si_001.pdf (4.89 MB)

Supplementary Material - Untangling The Environmental from The Dietary: Dust Does Not Matter from Untangling the environmental from the dietary: dust does Not matter

Download (4.89 MB)
journal contribution
posted on 2016-09-08, 06:44 authored by Gildas Merceron, Anusha Ramdarshan, Cécile Blondel, Jean-Renaud Boisserie, Noël Brunetiere, Arthur Francisco, Denis Gautier, Xavier Milhet, Alice Novello, Dimitri Pret
Both dust and silica phytoliths have been shown to contribute to reducing tooth volume during chewing. However, the way and the extent to which they individually contribute to tooth wear in natural conditions is unknown. There is still debate as to whether dental microwear represents a dietary or an environmental signal, with far reaching implications on evolutionary mechanisms which promote dental phenotypes such as molar hypsodonty in ruminants, molar lengthening in suids or enamel thickening in human ancestors.By combining controlled-food trials simulating natural conditions and dental microwear textural analysis on sheep, we show that the presence of dust on food items does not overwhelm the dietary signal. Our dataset explores variations in dental microwear textures between ewes fed on dust-free and dust-laden grass or browse fodders. Browsing diets with a dust supplement simulating Harmattan windswept environments contain more silica than dust-free grazing diets. Yet, browsers given a dust supplement differ from dust-free grazers. Regardless of the presence or the absence of dust, sheep with different diets yield significantly different dental microwear textures. Dust appears a less significant determinant of dental microwear signatures than the intrinsic properties of ingested foods, implying that diet plays a critical role in driving the natural selection of dental innovations.

History

Usage metrics

    Proceedings of the Royal Society B: Biological Sciences

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC