figshare
Browse
1/1
3 files

Sugar Transporter Protein 1 (STP1) contributes to regulation of the genes involved in shoot branching via carbon partitioning in Arabidopsis

dataset
posted on 2018-11-29, 13:28 authored by Kumi Otori, Noriaki Tanabe, Masahiro Tamoi, Shigeru Shigeoka

We previously demonstrated that alterations in sugar partitioning affect the expression of genes involved in hormone biosynthesis and responses, including BRANCHED1 (BRC1), resulting in enhanced shoot branching in transgenic Arabidopsis plants overexpressing cyanobacterial fructose-1,6-bisphosphatase-II in the cytosol (AcF). The exogenous treatment of wild-type Arabidopsis plants with sugars showed the same transcript characteristics, indicating that sugars act as a signal for branching. We also found that the reductions induced in BRC1 expression levels in wild-type plants by the sugar treatments were suppressed in the knockout mutant of sugar transporter 1 (stp1-1). Intracellular sugar contents were similar in stp1-1 and wild-type plants following the sugar treatments, suggesting that STP1 acts as a factor for the regulation of shoot branching depending on extracellular sugar contents.

Abbreviations: BRC1: BRABCHED1; FBP/SBPase: fructose-1,6-/sedoheptulose-1,7-bisphosphatase; Glc: glucose; HXK: hexokinase; SnRK1.1/AKIN10: SNF1-RELATED PROTEIN KINASE 1.1; Suc: sucrose; SnRK1: sucrose non-fermenting 1-related protein kinase; STP: sugar transporter protein

Sugar Transporter Protein 1 (STP1) contributes to regulation of shoot branching.

Funding

This work was supported by JST CREST Grant Number JPMJCR12B3, Japan.

History

Usage metrics

    Bioscience, Biotechnology, and Biochemistry

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC