Study of Cryogenic Rolling of FCC Metals with Different Stacking Fault Energies

Aluminum, copper and silver samples, all of them face-centered cubic (FCC) metals, were rolled at room and cryogenic temperatures until equivalent strains (ε) were between 3.23 and 4.13. The cryogenic temperature (CT) and room temperature (RT) rolled samples were evaluated by hardness tests and X-ray diffraction (XRD), which indicate influence of stacking fault energy (SFE) on process. Lower SFE metals tend to exhibit dislocation densities significantly increased and as consequence, hardness too. It was also noted that after sometime exposed to RT, the materials rolled at CT present hardness decrease.