SUPPORTING INFORMATION

- Atomic coordinates, MO diagrams and CIF files.

Table S1. DFT optimized cartesian coordinates (in solvent THF) PBE1PBE/LANL2DZ + polarisation + diffuse on Au

$[Au_2\{Se_2P(OEth_2)_2\}_2] \qquad (S=0) \qquad C_2$					
Energy	<i>y</i> = - 938.36758	1707 a. u.			
Atom	Χ	Y	Z (Angstrom)		
Au	0.000000	0.000000	1.612371		
Au	0.000000	0.000000	-1.436014		
Se	0.695637	2.353012	1.797892		
Se	-1.334500	2.065694	-1.441703		
Р	0.000000	3.232989	-0.115237		
0	1.268219	3.849927	-0.918586		
0	-0.715184	4.657599	0.180373		
С	2.329221	2.990577	-1.403416		
Η	1.902581	2.277485	-2.127636		
Η	2.747910	2.429562	-0.552560		
С	3.373758	3.874101	-2.051491		
Η	4.188722	3.241349	-2.431531		
Н	3.793565	4.584083	-1.325689		
Η	2.946266	4.434844	-2.894027		
С	-1.968192	4.711461	0.911124		
Η	-1.865506	4.132170	1.842901		
Н	-2.755502	4.255205	0.290166		
С	-2.266228	6.167458	1.198474		
Н	-3.218895	6.235529	1.742976		
Η	-2.356387	6.741674	0.266210		
Η	-1.477265	6.614213	1.818757		
Se	-0.695637	-2.353012	1.797892		
Se	1.334500	-2.065694	-1.441703		
Р	0.000000	-3.232989	-0.115237		
0	-1.268219	-3.849927	-0.918586		
0	0.715184	-4.657599	0.180373		
С	-2.329221	-2.990577	-1.403416		
Η	-1.902581	-2.277485	-2.127636		
Н	-2.747910	-2.429562	-0.552560		
С	-3.373758	-3.874101	-2.051491		
Н	-4.188722	-3.241349	-2.431531		
Η	-3.793565	-4.584083	-1.325689		
Η	-2.946266	-4.434844	-2.894027		
С	1.968192	-4.711461	0.911124		
Η	1.865506	-4.132170	1.842901		
Н	2.755502	-4.255205	0.290166		
С	2.266228	-6.167458	1.198474		
Н	3.218895	-6.235529	1.742976		

Η	2.356387	-6.741674	0.266210
Η	1.477265	-6.614213	1.818757

 $[Au_4 \{Se_2 P(OEth_2)_2\}_4] \quad (S = 0)$ Energy = -1876.74963881 a. u.

C_1

Atom	Χ	Y	Z (Angstrom)
Au	-1.601470	-0.000033	-0.000017
Au	-4.707688	0.000034	-0.000017
Se	-1.633812	-1.291866	2.100566
Se	-4.997100	-2.354590	0.660274
Р	-2.981859	-2.900285	1.393937
0	-3.139933	-3.982690	2.591311
0	-2.250824	-3.906001	0.351401
С	-3.702383	-3.588135	3.870121
Н	-4.632117	-3.022600	3.695901
Н	-2.977065	-2.938018	4.384820
С	-3.968433	-4.851379	4.660739
H	-4.379343	-4.577858	5.643100
Н	-3.040899	-5.419105	4.817167
Н	-4.696352	-5.491196	4.143493
C	-2.056654	-3.545097	-1.039138
H	-1.384690	-2.672325	-1.087812
Н	-3.031822	-3.272103	-1.472729
C	-1 453916	-4 741164	-1 744172
H	-1 298737	-4 485915	-2 802468
Н	-2.125398	-5.609134	-1.688859
Н	-0.482418	-5.008800	-1.306781
Se	-1.633800	1.291808	-2.100594
Se	-4.997055	2.354659	-0.660323
Р	-2.981784	2.900278	-1.393955
0	-3.139791	3.982704	-2.591319
0	-2.250719	3.905948	-0.351396
Ċ	-3.702263	3.588197	-3.870134
Н	-4.632051	3.022749	-3.695921
Н	-2.977001	2.938010	-4.384824
С	-3.968186	4.851463	-4.660760
Н	-4.379115	4.577976	-5.643123
Н	-3.040596	5.419099	-4.817184
Н	-4.696048	5.491353	-4.143523
С	-2.056600	3.545028	1.039147
Н	-1.384646	2.672250	1.087833
Н	-3.031786	3.272038	1.472703
С	-1.453879	4.741084	1.744214
Н	-1.298731	4.485820	2.802511
Н	-2.125357	5.609056	1.688894
Н	-0.482368	5.008724	1.306854
Н	4.379330	-4.577874	-5.643095
Н	4.632116	-3.022617	-3.695898
С	3.968417	-4.851390	-4.660735
Н	4.696330	-5.491214	-4.143488
С	3.702377	-3.588143	-3.870118
Н	2.977066	-2.938020	-4.384818
Н	3.040878	-5.419108	-4.817163

Se	4.997056	2.354656	0.660322
Se	4.997102	-2.354591	-0.660282
Au	4.707688	0.000032	0.000013
0	3.139923	-3.982692	-2.591308
Η	3.031789	3.272038	-1.472703
Р	2.981857	-2.900284	-1.393936
Η	4.632044	3.022738	3.695928
С	2.056603	3.545028	-1.039147
Se	1.633810	-1.291864	-2.100564
Р	2.981786	2.900278	1.393955
0	2.250721	3.905947	0.351395
Н	2.125359	5.609056	-1.688893
С	3.702260	3.588195	3.870136
Н	4.696062	5.491342	4.143526
0	3.139797	3.982705	2.591318
С	1.453881	4.741083	-1.744214
Н	1.384649	2.672250	-1.087834
Н	1.298734	4.485820	-2.802511
0	2.250823	-3.905995	-0.351394
С	3.968191	4.851460	4.660761
Au	1.601469	-0.000031	0.000018
Н	4.379113	4.577971	5.643126
Н	2.976989	2.938016	4.384824
Н	3.031822	-3.272082	1.472731
Н	0.482370	5.008723	-1.306854
С	2.056655	-3.545086	1.039143
Se	1.633802	1.291810	2.100596
Н	3.040606	5.419105	4.817179
Н	1.384684	-2.672320	1.087815
С	1.453929	-4.741155	1.744185
Н	2.125418	-5.609119	1.688874
Н	0.482433	-5.008802	1.306798
Η	1.298752	-4.485902	2.802480

$[AuSe_2{P(CH_2)_2Ph)_2}]_2$	$(S = \theta)$
Energy = -1560.8891736	5 a. u.

 C_i

Atom	Χ	Y	Z (Angstrom)
Au	0.190205	-1.657706	-0.146881
Se	2.101673	2.178915	-0.583964
Se	2.520348	-1.567664	-0.930297
Р	3.190263	0.330357	0.028372
С	3.306137	0.176792	1.868222
Η	3.958834	-0.691203	2.049751
Η	3.843272	1.082339	2.194536
С	1.984533	0.022253	2.626859
Η	1.341799	0.897480	2.424303
Н	1.452593	-0.873155	2.258095
С	2.237543	-0.101166	4.112295
С	2.331421	1.043921	4.920453
Н	2.190514	2.032139	4.470985
С	2.408746	-1.360957	4.708807
Н	2.329353	-2.262502	4.093014
С	2.669517	-1.475907	6.079912
Н	2.794513	-2.464926	6.528687
С	2.592284	0.934602	6.291792
Н	2.656536	1.836206	6.906755
С	2.763766	-0.327220	6.876693
Н	2.963666	-0.414929	7.947714
С	4.920381	0.626003	-0.554219
Н	4.851976	0.791215	-1.639949
Н	5.233416	1.576200	-0.092735
С	5.919160	-0.498714	-0.232014
Н	5.973618	-0.652203	0.859956
Н	5.567778	-1.442583	-0.686417
С	7.291409	-0.150799	-0.765064
С	7.635633	-0.438934	-2.096155
Н	6.911582	-0.945827	-2.741726
С	8.235726	0.493347	0.050290
Н	7.983849	0.719233	1.090984
С	9.496117	0.842704	-0.450881
Η	10.221255	1.339724	0.198947
С	8.894063	-0.091701	-2.601701
Н	9.147552	-0.327864	-3.638586
С	9.829421	0.551775	-1.780104
Н	10.813461	0.820904	-2.172516
Au	-0.190205	1.657706	0.146881
Se	-2.101673	-2.178915	0.583964
Se	-2.520348	1.567664	0.930297
Р	-3.190263	-0.330357	-0.028372
С	-3.306137	-0.176792	-1.868222
Н	-3.958834	0.691203	-2.049751
Н	-3.843272	-1.082339	-2.194536
С	-1.984533	-0.022253	-2.626859
Н	-1.341799	-0.897480	-2.424303

Н	-1.452593	0.873155	-2.258095
С	-2.237543	0.101166	-4.112295
С	-2.331421	-1.043921	-4.920453
Н	-2.190514	-2.032139	-4.470985
С	-2.408746	1.360957	-4.708807
Н	-2.329353	2.262502	-4.093014
С	-2.669517	1.475907	-6.079912
Н	-2.794513	2.464926	-6.528687
С	-2.592284	-0.934602	-6.291792
Н	-2.656536	-1.836206	-6.906755
С	-2.763766	0.327220	-6.876693
Н	-2.963666	0.414929	-7.947714
С	-4.920381	-0.626003	0.554219
Н	-4.851976	-0.791215	1.639949
Н	-5.233416	-1.576200	0.092735
С	-5.919160	0.498714	0.232014
Н	-5.973618	0.652203	-0.859956
Н	-5.567778	1.442583	0.686417
С	-7.291409	0.150799	0.765064
С	-7.635633	0.438934	2.096155
Н	-6.911582	0.945827	2.741726
С	-8.235726	-0.493347	-0.050290
Н	-7.983849	-0.719233	-1.090984
С	-9.496117	-0.842704	0.450881
Н	-10.221255	-1.339724	-0.198947
С	-8.894063	0.091701	2.601701
Н	-9.147552	0.327864	3.638586
С	-9.829421	-0.551775	1.780104
Н	-10.813461	-0.820904	2.172516

Table S2. MP2 optimized cartesian coordinates (in solvent THF) MP2/LANL2DZ + polarisation + diffuse on Au

$[Au_2\{Se_2P(OEth_2)_2\}_2] (S = 0) C_2$ Energy = -935.3867203 a. u.						
Atom	Χ	Y	Z (A	ngstrom)		
Au	0.000000	0.000000	9.068472			
Au	0.000000	0.000000	6.181952			
Se	2.010716	1.389791	9.307707			
Se	0.146007	2.446807	6.167571			
Р	2.015948	2.346177	7.328305			
0	3.267011	1.791318	6.435135			
0	2.601739	3.863982	7.487376			
С	3.330434	0.375476	6.091672			
Η	2.587188	0.175891	5.303158			
Н	3.094358	-0.227613	6.982908			
С	4.746060	0.106453	5.598404			
Н	4.830409	-0.950307	5.299516			
Н	5.476125	0.309243	6.395067			
Н	4.977148	0.739460	4.729597			
С	1.779630	4.845791	8.188591			
Н	1.453694	4.425001	9.152794			
Н	0.895174	5.070763	7.571689			
С	2.647437	6.082646	8.387320			
Н	2.059169	6.860452	8.898594			
Н	2.986014	6.474676	7.417782			
Н	3.525883	5.840763	9.002105			
Se	-2.010716	-1.389791	9.307707	1		
Se	-0.146007	-2.446807	6.167571			
Р	-2.015948	-2.346177	7.328305	,		
0	-3.267011	-1.791318	6.435135	5		
0	-2.601739	-3.863982	7.487376)		
С	-3.330434	-0.375476	6.091672	2		
Н	-2.587188	-0.175891	5.303158	}		
Н	-3.094358	0.227613	6.982908			
С	-4.746060	-0.106453	5.598404	ļ		
Н	-4.830409	0.950307	5.299516			
Η	-5.476125	-0.309243	6.395067	1		
Н	-4.977148	-0.739460	4.729597	1		
С	-1.779630	-4.845791	8.188591			
Н	-1.453694	-4.425001	9.152794	ļ		
Η	-0.895174	-5.070763	7.571689)		
С	-2.647437	-6.082646	8.387320)		
Н	-2.059169	-6.860452	8.898594	ļ		
Н	-2.986014	-6.474676	7.417782	2		
Η	-3.525883	-5.840763	9.002105	5		

Table S3. Cartesian coordinates from t	he [Au ₂ {Se ₂ P(OEth ₂) ₂ } ₂] RX model
PBE1PBE/LANL2DZ + polarisation +	diffuse on Au

[Au ₂ {S	$Se_2P(OEth_2)_2$	$[2]_{27/43} (S = 0)$	C_2
Atom	v938.02809	V	7 (Angstwom)
Atom	A 0.000	Y	Z (Angstrom)
Au	0.000	0.000	9.0 4 0 6.007
Au Se	2 034	1 270	0.097
Se	0.580	2 3 4 4	6.010
P	0.389	2.344	7 381
$\hat{0}$	3 569	1.840	6.682
0	2 763	3 758	7 664
C	3 831	0.495	6 214
н	3 023	0.425	5 831
H	4 095	-0.064	6 962
C II	4 903	0.004	5 194
н	5 044	-0 398	4 875
Н	5 716	0.827	5 585
Н	4 647	1 061	4 462
C	2 021	4 724	8 477
Н	1 966	4 413	9 394
H	1 120	4 827	8 133
C	2,736	6.018	8 424
н	2.262	6 667	8 951
H	2.786	6 3 1 9	7 514
Н	3 623	5 908	8 774
Se	-2.034	-1.270	9.266
Se	-0.589	-2.344	6.019
P	-2.277	-2.312	7.381
0	-3.569	-1.840	6.682
0	-2.763	-3.758	7.664
C	-3.831	-0.495	6.214
Н	-3.023	-0.121	5.831
Н	-4.095	0.064	6.962
С	-4.903	-0.496	5.194
Н	-5.044	0.398	4.875
Н	-5.716	0.827	5.585
Н	-4.647	-1.061	4.462
С	-2.021	-4.724	8.477
Н	-1.966	-4.413	9.394
Η	-1.120	-4.827	8.133
С	-2.736	-6.018	8.424
Н	-2.262	-6.667	8.951
Η	-2.786	-6.319	7.514
Н	-3.623	-5.908	8.774

Table S4. Distances benchmark in function of the functional

Distances(Å) Functional	X-ray ^a	PBE0	MP2	BP86	B3LYP	LC-ωPBE	Cam-B3LYP
Au1a-Au1b	2.943	3.044	2.886	3.062	3.170	3.005	3.091
Au1a-Se1a	2.409	2.459	2.453	2.474	2.486	2.44	2.47
Se1b-P	2.177	2.216	2.200	2.251	2.240	2.19	2.21

Table S5. Computed emission wavelength in function of the basis set (a =LANL2DZ + pol + diff, b= Def2TZPVP)

Compound Basis set	Basis set a	Basis set b
Compound 4	495 nm	484 nm

Figure S1: TD-DFT benchmark

Figure S3 : Frontier MO diagram of [Au]₄ (X-ray geometry, cut-off equal to 0.035 au)

Figure S4 : Frontier MO diagram of [Au]₆ (X-ray geometry, cut-off equal to 0.035 au)

CIF Files of 3 and 4

data 3 audit creation method SHELXL-97 chemical name systematic ; ? ; _chemical_name_common ? ? chemical formula moiety ? chemical formula sum 'C12 H28 Au2 O4 P2 Se4' 1008.06 chemical formula weight loop _atom_type_symbol atom type description _atom_type_scat_dispersion real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' '0' '0' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'P' 'P' 0.1023 0.0942 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Se' 'Se' -0.0929 2.2259 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Au' 'Au' -2.0133 8.8022 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Orthorhombic _symmetry_space_group_name_H-M Pccn loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y+1/2, z' '-x, y+1/2, -z+1/2' 'x+1/2, -y, -z+1/2' '-x, -y, -z' 'x-1/2, y-1/2, -z' 'x, -y-1/2, z-1/2' '-x-1/2, y, z-1/2' _cell_length a 8.8851(11) cell length b 23.393(3)cell length c 12.0871(15) cell_angle_alpha 90.00 cell angle beta 90.00 cell angle gamma 90.00 2512.3(6) cell volume

cell formula units Z 4 cell measurement temperature 296(2) cell measurement reflns used 4639 cell measurement theta min 2.45 _cell_measurement_theta_max 24.37 _exptl_crystal_description column exptl crystal colour yellow exptl crystal size max 0.28 exptl crystal size mid 0.25 exptl_crystal_size_min 0.15 _exptl_crystal_density_meas 2 _exptl_crystal_density_diffrn 2.665 _exptl_crystal_density_method 'not measured' _exptl_crystal_F 000 1824 _exptl_absorpt_coefficient mu 17.601 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.0836 _exptl_absorpt_correction_T_max 0.1777 SADABS exptl absorpt process details _exptl_special_details ; ? ; _diffrn_ambient_temperature 296(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK∖a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker APEX-II CCD' _diffrn_measurement_method '\f and \w scans' _diffrn_detector_area_resol_mean ? 20746 _diffrn_reflns_number _diffrn_reflns_av_R_equivalents 0.0406 _diffrn_reflns_av_sigmaI/netI 0.0257 _diffrn_reflns_limit_h_min -10 _diffrn_reflns_limit_h_max 10 _diffrn_reflns_limit_k_min -28 diffrn reflns limit k max 27 diffrn reflns limit l min -14 13 diffrn reflns limit l max 1.74 diffrn reflns theta min diffrn reflns theta max 25.99 reflns number total 2399 reflns number gt 1592 _reflns_threshold expression >2sigma(I) _computing_data_collection 'Bruker APEX2' computing cell refinement 'Bruker SAINT' computing data reduction 'Bruker SAINT' computing structure solution 'SHELXS-97 (Sheldrick, 2008)' computing structure refinement 'SHELXL-97 (Sheldrick, 2008)' 'Bruker SHELXTL' computing molecular graphics _computing_publication_material 'Bruker SHELXTL'

_refine_special_details

;

Refinement of $F^{2^{-}}$ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on $F^{2^{-}}$, conventional R-factors R are based

on F, with F set to zero for negative $F^{2^{-}}$. The threshold expression of $F^{2^{-}} > 2 \operatorname{sigma}(F^{2^{-}})$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on $F^{2^{-}}$ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

```
refine ls structure factor coef Fsqd
refine ls_matrix_type
                                  full
refine_ls_weighting_scheme
                                  calc
_refine_ls_weighting_details
 'calc w=1/[\s^2^(Fo^2^)+(0.0568P)^2^+7.8512P] where P=(Fo^2^+2Fc^2)/3'
atom sites solution primary
                                  direct
_atom_sites_solution_secondary
                                  difmap
_atom_sites_solution_hydrogens
                                  geom
_refine_ls_hydrogen treatment
                                  constr
_refine_ls_extinction method
                                  none
_refine_ls_extinction_coef
                                  2
_refine_ls_number reflns
                                  2399
_refine_ls_number_parameters
                                  110
_refine_ls_number_restraints
                                  0
_refine_ls_R_factor_all
                                  0.0554
_refine_ls_R_factor_gt
                                  0.0347
_refine_ls_wR_factor_ref
                                  0.1133
_refine_ls_wR_factor_gt
                                  0.0998
_refine_ls_goodness_of_fit_ref
                                  1.016
_refine_ls_restrained_S_all
                                  1.016
_refine_ls_shift/su_max
                                  0.001
refine ls shift/su mean
                                  0.000
loop_
 atom_site_label
 _atom_site_type_symbol
 _atom_site_fract x
 _atom_site_fract_y
 _atom_site_fract_z
 _atom_site_U_iso_or_equiv
 _atom_site_adp_type
 _atom_site_occupancy
 atom site symmetry multiplicity
 _atom_site_calc flag
 _atom_site_refinement flags
 atom site disorder assembly
 atom site disorder group
Aul Au 1.2500 0.2500 0.65927(4) 0.06409(19) Uani 1 2 d S . .
Au2 Au 1.2500 0.2500 0.41181(3) 0.05928(18) Uani 1 2 d S . .
C1 C 0.7228(12) 0.3383(6) 0.5793(12) 0.109(4) Uani 1 1 d . . .
H1A H 0.7093 0.3068 0.5281 0.131 Uiso 1 1 calc R . .
H1B H 0.7503 0.3226 0.6508 0.131 Uiso 1 1 calc R . .
C2 C 0.5828(14) 0.3700(7) 0.5892(13) 0.127(5) Uani 1 1 d . . .
H2A H 0.5054 0.3441 0.6154 0.153 Uiso 1 1 calc R . .
H2B H 0.5960 0.3993 0.6453 0.153 Uiso 1 1 calc R .
C3 C 0.5314(18) 0.3960(9) 0.4933(14) 0.174(8) Uani 1 1 d . . .
H3A H 0.5803 0.4324 0.4844 0.261 Uiso 1 1 calc R . .
H3B H 0.4246 0.4016 0.4982 0.261 Uiso 1 1 calc R . .
H3C H 0.5539 0.3722 0.4309 0.261 Uiso 1 1 calc R .
C4 C 1.0712(15) 0.4304(6) 0.3769(10) 0.117(4) Uani 1 1 d . . .
H4A H 0.9675 0.4431 0.3722 0.140 Uiso 1 1 calc R . .
H4B H 1.0863 0.4015 0.3203 0.140 Uiso 1 1 calc R . .
C5 C 1.1681(16) 0.4779(5) 0.3544(10) 0.115(4) Uani 1 1 d . . .
H5A H 1.2715 0.4646 0.3568 0.138 Uiso 1 1 calc R . .
```

H5B H 1.1557 0.5058 0.4130 0.138 Uiso 1 1 calc R . . C6 C 1.1428(17) 0.5063(6) 0.2481(11) 0.135(5) Uani 1 1 d . . . H6A H 1.1612 0.4799 0.1890 0.202 Uiso 1 1 calc R . . H6B H 1.2100 0.5383 0.2414 0.202 Uiso 1 1 calc R . . H6C H 1.0406 0.5196 0.2443 0.202 Uiso 1 1 calc R . 01 0 0.8429(7) 0.3758(3) 0.5395(5) 0.0789(17) Uani 1 1 d . . . O2 O 1.0955(8) 0.4051(3) 0.4825(5) 0.0844(18) Uani 1 1 d . . P1 P 1.0081(3) 0.35166(10) 0.52399(19) 0.0649(6) Uani 1 1 d . . Sel Se 0.99434(11) 0.28360(4) 0.40185(7) 0.0747(3) Uani 1 1 d . . Se2 Se 1.10275(15) 0.33438(5) 0.68515(8) 0.0982(4) Uani 1 1 d . . loop _atom_site_aniso_label _atom_site_aniso_U 11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 atom site aniso U 12 Au1 0.0770(4) 0.0700(4) 0.0453(3) 0.000 0.000 0.0067(2) Au2 0.0733(3) 0.0610(3) 0.0435(3) 0.000 0.000 0.0076(2) C1 0.080(8) 0.104(10) 0.143(11) 0.019(8) 0.027(7) -0.007(6) C2 0.076(8) 0.147(13) 0.159(14) -0.022(10) 0.006(8) 0.001(8) C3 0.124(12) 0.24(2) 0.159(15) 0.037(15) -0.065(11) 0.012(13) C4 0.135(10) 0.124(10) 0.091(8) 0.035(8) -0.023(7) -0.033(8) C5 0.138(10) 0.087(8) 0.121(10) 0.018(7) 0.011(8) -0.035(8) C6 0.161(13) 0.113(10) 0.130(10) 0.046(9) -0.012(10) -0.032(10) 01 0.070(4) 0.068(4) 0.099(4) 0.004(3) 0.009(3) 0.013(3) 02 0.095(5) 0.084(4) 0.074(4) 0.011(3) -0.004(3) -0.013(4) P1 0.0683(14) 0.0636(13) 0.0629(13) 0.0040(10) 0.0043(12) 0.0074(11) Sel 0.0764(6) 0.0804(6) 0.0673(5) -0.0055(5) -0.0096(5) 0.0120(5) Se2 0.1368(11) 0.0981(8) 0.0596(5) -0.0150(5) -0.0094(6) 0.0440(7) _geom_special_details All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop geom bond atom site label 1 geom bond atom site label 2 geom bond distance _geom_bond_site_symmetry 2 geom bond publ flag Aul Se2 2.3887(11) . ? Aul Se2 2.3887(11) 2 755 ? Au1 Au2 2.9910(7) . ? Au1 Au2 3.0525(7) 7 566 ? Au2 Sel 2.4067(10) . ? Au2 Sel 2.4067(10) 2 755 ? Au2 Au1 3.0526(7) 7 565 ? C1 C2 1.453(16) . ? C1 O1 1.463(12) . ?

C1 H1A 0.9700 . ? C1 H1B 0.9700 . ?

C2 C3 1.387(19) . ? C2 H2A 0.9700 . ? C2 H2B 0.9700 . ? C3 H3A 0.9600 . ? C3 H3B 0.9600 . ? C3 H3C 0.9600 . ? C4 O2 1.424(12) . ? C4 C5 1.432(15) . ? C4 H4A 0.9700 . ? C4 H4B 0.9700 . ? C5 C6 1.464(16) . ? C5 H5A 0.9700 . ? C5 H5B 0.9700 . ? C6 H6A 0.9600 . ? C6 H6B 0.9600 . ? C6 H6C 0.9600 . ? O1 P1 1.584(6) . ? O2 P1 1.555(7) . ? P1 Se2 2.160(3) . ? P1 Se1 2.175(3) . ? loop _geom_angle_atom_site_label 1 _geom_angle_atom_site_label_ 2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry 1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Se2 Au1 Se2 164.95(5) . 2_755 ? Se2 Au1 Au2 97.53(3) . . ? Se2 Au1 Au2 97.53(3) 2_755 . ? Se2 Au1 Au2 82.47(3) . 7_566 ? Se2 Au1 Au2 82.47(3) 2_755 7_566 ? Au2 Au1 Au2 180.0 . 7 566 ? Sel Au2 Sel 174.26(5) . 2_755 ? Sel Au2 Au1 92.87(2) . . ? Sel Au2 Au1 92.87(2) 2_755 . ? Sel Au2 Au1 87.13(2) . 7_565 ? Sel Au2 Au1 87.13(2) 2 755 7 565 ? Au1 Au2 Au1 180.0 . 7 565 ? C2 C1 O1 110.2(11) . . ? C2 C1 H1A 109.6 . . ? O1 C1 H1A 109.6 . . ? C2 C1 H1B 109.6 . . ? O1 C1 H1B 109.6 . . ? H1A C1 H1B 108.1 . . ? C3 C2 C1 115.9(14) . . ? C3 C2 H2A 108.3 . . ? C1 C2 H2A 108.3 . . ? C3 C2 H2B 108.3 . . ? C1 C2 H2B 108.3 . . ? H2A C2 H2B 107.4 . . ? C2 C3 H3A 109.5 . . ? C2 C3 H3B 109.5 . . ? H3A C3 H3B 109.5 . . ? C2 C3 H3C 109.5 . . ? H3A C3 H3C 109.5 . . ? H3B C3 H3C 109.5 . . ? 02 C4 C5 113.7(10) . . ? O2 C4 H4A 108.8 . . ?

```
C5 C4 H4A 108.8 . . ?
O2 C4 H4B 108.8 . . ?
C5 C4 H4B 108.8 . . ?
H4A C4 H4B 107.7 . . ?
C4 C5 C6 115.3(12) . . ?
C4 C5 H5A 108.4 . . ?
C6 C5 H5A 108.4 . . ?
C4 C5 H5B 108.4 . . ?
C6 C5 H5B 108.4 . . ?
H5A C5 H5B 107.5 . . ?
C5 C6 H6A 109.5 . . ?
С5 С6 Н6В 109.5 . . ?
H6A C6 H6B 109.5 . . ?
C5 C6 H6C 109.5 . . ?
H6A C6 H6C 109.5 . . ?
H6B C6 H6C 109.5 . . ?
C1 O1 P1 120.1(7) . . ?
C4 O2 P1 123.2(7) . . ?
O2 P1 O1 102.4(4) . . ?
O2 P1 Se2 104.3(3) . . ?
O1 P1 Se2 108.7(3) . . ?
O2 P1 Se1 113.4(3) . . ?
O1 P1 Se1 106.8(3) . . ?
Se2 P1 Se1 119.80(11) . . ?
P1 Se1 Au2 98.76(7) . . ?
P1 Se2 Au1 104.47(7) . . ?
_diffrn_measured_fraction_theta max
                                      0.972
_diffrn_reflns_theta full
                                      25.99
_diffrn_measured_fraction_theta_full
                                      0.972
_refine_diff_density_max 1.246
_refine_diff_density_min -0.966
refine_diff_density_rms 0.200
#===END
data 4
_audit_creation method
                                SHELXL-97
chemical name systematic
;
 ?
;
_chemical_name common
                                 ?
chemical melting point
                                 ?
_chemical_formula_moiety
                                 ?
_chemical_formula_sum
'C32 H36 Au2 P2 Se4'
chemical formula weight
                           1192.32
loop
 _atom_type_symbol
 atom type description
 _atom_type_scat_dispersion real
 _atom_type_scat_dispersion_imag
 _atom_type_scat_source
 'c' 'c' 0.0033 0.0016
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
```

'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'P' 'P' 0.1023 0.0942 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Se' 'Se' -0.0929 2.2259 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Au' 'Au' -2.0133 8.8022 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Triclinic symmetry cell setting symmetry space group name H-M P-1 loop symmetry equiv pos as xyz 'x, y, z' '-x, -y, -z' _cell_length a 9.7733(8) _____length_b 13.1376(11) _cell_length_c 14.1643(12) _cell_angle_alpha 79.489(2) _cell_angle_beta 84.857(2) _cell_angle_gamma 72.986(2) 1708.6(2) _cell_volume _cell_formula_units_Z 2 296(2) _cell_measurement_temperature _cell_measurement_reflns_used 6834 _cell_measurement_theta_min 2.18 cell measurement theta max 24.96 prism _exptl_crystal_description _exptl_crystal_colour colourless _exptl_crystal_size_max 0.42 0.10 _exptl_crystal_size_mid _exptl_crystal_size_min 0.05 ? _exptl_crystal_density_meas 2.318 _exptl_crystal_density_diffrn 'not measured' _exptl_crystal_density_method _exptl_crystal_F_000 1104 _exptl_absorpt_coefficient mu 12.952 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction T min 0.0739 exptl absorpt correction T max 0.5636 exptl absorpt process details SADABS exptl special details ; ? ; _diffrn_ambient_temperature 296(2) diffrn radiation wavelength 0.71073 diffrn radiation type MoK∖a diffrn radiation source 'fine-focus sealed tube' diffrn radiation monochromator graphite diffrn measurement device type 'Bruker APEX-II CCD' ' f and w scans'diffrn measurement method diffrn detector area resol mean ? diffrn standards number 0 diffrn standards interval count ? diffrn standards interval time ?

```
diffrn standards decay %
                                 ?
diffrn reflns number
                                 19833
diffrn reflns av R equivalents
                                 0.0379
diffrn_reflns_av_sigmaI/netI
                                 0.0382
diffrn reflns limit h min
                                 -11
diffrn reflns limit h max
                                 11
diffrn reflns limit k min
                                 -15
diffrn reflns limit k max
                                 15
diffrn reflns limit l min
                                 -16
diffrn reflns limit 1 max
                                 16
diffrn reflns theta min
                                 1.46
diffrn reflns theta max
                                 25.05
_reflns_number_total
                                 6044
_reflns_number_gt
                                 4892
reflns threshold expression
                                 >2sigma(I)
_computing_data_collection
                                 'Bruker APEX2'
_computing_cell_refinement
                                'Bruker SAINT'
_computing_data reduction
                                 'Bruker SAINT'
_computing_structure_solution
                                 'SHELXS-97 (Sheldrick, 1990)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics
                                  'Bruker SHELXTL'
computing publication material
                                  'Bruker SHELXTL'
_refine_special_details
;
Refinement of F^{2^{-1}} against ALL reflections. The weighted R-factor wR and
 goodness of fit S are based on F^{2}, conventional R-factors R are based
 on F, with F set to zero for negative F^{2^{-}}. The threshold expression of
 F^2^ > 2 sigma (F^2^) is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F^{2} are statistically about twice as large as those based on F, and R-
factors based on ALL data will be even larger.
;
_refine_ls_structure_factor coef Fsqd
_refine_ls_matrix_type
                                 full
_refine_ls_weighting scheme
                                 calc
_refine_ls_weighting_details
'calc w=1/[(s^2^{(Fo^2^)}+(0.0244P)^2+0.8907P] where P=(Fo^2^+2Fc^2^)/3'
atom sites solution primary
                               direct
_atom_sites_solution_secondary
                                 difmap
atom sites solution hydrogens
                               qeom
refine ls hydrogen treatment
                                 constr
refine ls extinction method
                                none
refine ls extinction coef
                                 ?
refine_ls number refins
                                 6044
refine ls number parameters
                                 361
refine ls number restraints
                                 0
refine ls R factor all
                                 0.0379
refine ls R factor gt
                                 0.0260
refine ls wR factor ref
                                 0.0630
refine_ls wR factor gt
                                 0.0581
refine_ls_goodness of fit ref
                                1.026
refine ls restrained S all
                                1.026
                                 0.002
refine ls shift/su max
refine ls shift/su mean
                                 0.000
loop
 atom site label
 atom site type symbol
```

```
atom site fract x
 _atom_site_fract y
  atom_site_fract_z
 atom site U_iso or equiv
 atom site adp type
 _atom_site_occupancy
 atom_site_symmetry_multiplicity
 atom site calc flag
 _atom_site_refinement flags
 atom site disorder assembly
 atom site disorder group
Au1 Au 0.48424(2) 0.397669(17) 0.944241(17) 0.04934(8) Uani 1 1 d . . .
Au2 Au 0.50755(2) 0.126327(17) -0.047498(16) 0.04698(8) Uani 1 1 d . . .
Sel Se 0.31119(7) 0.35214(5) 1.06142(5) 0.06480(19) Uani 1 1 d . . .
Se2 Se 0.64827(7) 0.43075(5) 0.81408(5) 0.05834(17) Uani 1 1 d . .
Se3 Se 0.27948(6) 0.17853(4) -0.11961(5) 0.05167(15) Uani 1 1 d . . .
Se4 Se 0.74074(6) 0.09624(5) 0.01054(4) 0.05356(16) Uani 1 1 d . . .
P1 P 0.78393(15) 0.49658(11) 0.88456(10) 0.0424(3) Uani 1 1 d . . .
P2 P 0.73358(14) -0.02090(11) 0.13995(10) 0.0393(3) Uani 1 1 d . . .
C1 C 0.8873(6) 0.3926(5) 0.9741(4) 0.0578(16) Uani 1 1 d . . .
H1A H 0.9344 0.3310 0.9428 0.069 Uiso 1 1 calc R . .
H1B H 0.9620 0.4194 0.9923 0.069 Uiso 1 1 calc R . .
C2 C 0.8159(7) 0.3517(5) 1.0649(5) 0.0657(18) Uani 1 1 d . . .
H2A H 0.7626 0.4128 1.0951 0.079 Uiso 1 1 calc R . .
H2B H 0.7473 0.3178 1.0484 0.079 Uiso 1 1 calc R . .
C3 C 0.9132(6) 0.2733(4) 1.1359(4) 0.0460(13) Uani 1 1 d . . .
C4 C 0.8830(8) 0.2774(5) 1.2341(6) 0.075(2) Uani 1 1 d . . .
H4 H 0.8005 0.3263 1.2540 0.091 Uiso 1 1 calc R . .
C5 C 1.0358(7) 0.1994(5) 1.1119(5) 0.0566(15) Uani 1 1 d . . .
H5 H 1.0587 0.1943 1.0474 0.068 Uiso 1 1 calc R . .
C6 C 1.1266(8) 0.1320(6) 1.1808(6) 0.078(2) Uani 1 1 d . . .
H6 H 1.2097 0.0825 1.1625 0.094 Uiso 1 1 calc R . .
C7 C 0.9774(12) 0.2079(7) 1.3017(5) 0.093(3) Uani 1 1 d . . .
H7 H 0.9579 0.2104 1.3669 0.112 Uiso 1 1 calc R . .
C8 C 1.0956(11) 0.1377(7) 1.2726(7) 0.094(3) Uani 1 1 d . . .
H8 H 1.1577 0.0917 1.3182 0.113 Uiso 1 1 calc R . .
C9 C 0.9127(6) 0.5310(4) 0.7936(4) 0.0482(13) Uani 1 1 d . . .
H9A H 0.8618 0.5911 0.7474 0.058 Uiso 1 1 calc R . .
H9B H 0.9789 0.5559 0.8242 0.058 Uiso 1 1 calc R . .
C10 C 1.0003(7) 0.4419(5) 0.7385(5) 0.0607(16) Uani 1 1 d . . .
H10A H 1.0485 0.3795 0.7837 0.073 Uiso 1 1 calc R . .
H10B H 0.9365 0.4203 0.7026 0.073 Uiso 1 1 calc R . .
C11 C 1.1101(6) 0.4792(4) 0.6700(4) 0.0509(14) Uani 1 1 d . . .
C12 C 1.0704(7) 0.5486(5) 0.5862(5) 0.0590(16) Uani 1 1 d . . .
H12 H 0.9752 0.5700 0.5693 0.071 Uiso 1 1 calc R . .
C13 C 1.2528(7) 0.4487(5) 0.6918(5) 0.0600(16) Uani 1 1 d . . .
H13 H 1.2830 0.4009 0.7479 0.072 Uiso 1 1 calc R . .
C14 C 1.3501(7) 0.4875(6) 0.6325(5) 0.0718(19) Uani 1 1 d . . .
H14 H 1.4456 0.4660 0.6489 0.086 Uiso 1 1 calc R . .
C15 C 1.1696(8) 0.5876(5) 0.5262(5) 0.0695(19) Uani 1 1 d . . .
H15 H 1.1408 0.6348 0.4695 0.083 Uiso 1 1 calc R . .
C16 C 1.3096(8) 0.5569(5) 0.5499(5) 0.0678(18) Uani 1 1 d . . .
H16 H 1.3766 0.5833 0.5099 0.081 Uiso 1 1 calc R . .
C17 C 0.5906(6) 0.0327(4) 0.2239(4) 0.0499(14) Uani 1 1 d . . .
H17A H 0.4996 0.0472 0.1943 0.060 Uiso 1 1 calc R . .
H17B H 0.5927 -0.0220 0.2804 0.060 Uiso 1 1 calc R . .
C18 C 0.5981(7) 0.1341(5) 0.2554(5) 0.0610(16) Uani 1 1 d . . .
H18A H 0.5864 0.1907 0.1997 0.073 Uiso 1 1 calc R . .
H18B H 0.6929 0.1216 0.2788 0.073 Uiso 1 1 calc R . .
C19 C 0.4878(6) 0.1742(4) 0.3333(4) 0.0488(14) Uani 1 1 d . . .
C20 C 0.4250(7) 0.1088(5) 0.3973(5) 0.0649(17) Uani 1 1 d . . .
```

```
H20 H 0.4457 0.0362 0.3926 0.078 Uiso 1 1 calc R . .
C21 C 0.4546(7) 0.2804(5) 0.3438(5) 0.0694(18) Uani 1 1 d . . .
H21 H 0.4955 0.3272 0.3013 0.083 Uiso 1 1 calc R .
C22 C 0.3617(8) 0.3188(6) 0.4162(6) 0.083(2) Uani 1 1 d . . .
H22 H 0.3405 0.3913 0.4216 0.100 Uiso 1 1 calc R .
C23 C 0.3311(7) 0.1493(6) 0.4690(5) 0.077(2) Uani 1 1 d . . .
H23 H 0.2879 0.1036 0.5110 0.092 Uiso 1 1 calc R .
C24 C 0.3006(7) 0.2537(7) 0.4797(5) 0.079(2) Uani 1 1 d . .
H24 H 0.2393 0.2800 0.5294 0.095 Uiso 1 1 calc R . .
C25 C 0.9033(5) -0.0427(4) 0.1947(4) 0.0437(13) Uani 1 1 d . . .
H25A H 0.9801 -0.0674 0.1486 0.052 Uiso 1 1 calc R . .
H25B H 0.9092 0.0260 0.2072 0.052 Uiso 1 1 calc R . .
C26 C 0.9280(6) -0.1227(5) 0.2871(4) 0.0569(16) Uani 1 1 d . . .
H26A H 0.9232 -0.1919 0.2751 0.068 Uiso 1 1 calc R . .
H26B H 0.8523 -0.0983 0.3338 0.068 Uiso 1 1 calc R .
C27 C 1.0711(6) -0.1371(4) 0.3286(4) 0.0477(14) Uani 1 1 d . . .
C28 C 1.0760(7) -0.1146(5) 0.4190(4) 0.0622(17) Uani 1 1 d . . .
H28 H 0.9913 -0.0907 0.4543 0.075 Uiso 1 1 calc R .
C29 C 1.1973(7) -0.1735(5) 0.2788(5) 0.0670(18) Uani 1 1 d . . .
H29 H 1.1959 -0.1905 0.2180 0.080 Uiso 1 1 calc R . .
C30 C 1.2062(9) -0.1273(6) 0.4580(5) 0.078(2) Uani 1 1 d . . .
H30 H 1.2082 -0.1112 0.5191 0.093 Uiso 1 1 calc R . .
C31 C 1.3271(7) -0.1854(6) 0.3178(6) 0.082(2) Uani 1 1 d . . .
H31 H 1.4122 -0.2087 0.2827 0.098 Uiso 1 1 calc R . .
C32 C 1.3302(9) -0.1630(6) 0.4080(7) 0.082(2) Uani 1 1 d . . .
H32 H 1.4173 -0.1723 0.4348 0.098 Uiso 1 1 calc R . .
loop
 _atom_site_aniso_label
 _atom_site_aniso_U_11
 _atom_site_aniso_U_22
 _atom_site_aniso_U_33
 _atom_site_aniso_U_23
 _atom_site_aniso_U_13
 atom site aniso U 12
Au1 0.04200(13) 0.05060(14) 0.06022(16) -0.01660(11) -0.00045(10) -
0.01634(10)
Au2 0.04869(14) 0.04866(13) 0.04288(13) -0.00836(10) -0.00889(10) -
0.01001(10)
Sel 0.0700(4) 0.0499(3) 0.0854(5) -0.0281(3) 0.0231(4) -0.0311(3)
Se2 0.0637(4) 0.0729(4) 0.0528(4) -0.0174(3) -0.0010(3) -0.0375(3)
Se3 0.0483(3) 0.0413(3) 0.0645(4) -0.0122(3) -0.0127(3) -0.0059(3)
Se4 0.0520(4) 0.0619(4) 0.0470(3) 0.0050(3) -0.0113(3) -0.0222(3)
P1 0.0429(8) 0.0420(7) 0.0466(8) -0.0090(6) -0.0002(6) -0.0180(6)
P2 \ 0.0375(7) \ 0.0415(7) \ 0.0380(8) \ -0.0078(6) \ -0.0039(6) \ -0.0082(6)
C1 \ 0.053(4) \ 0.066(4) \ 0.051(4) \ 0.003(3) \ -0.010(3) \ -0.017(3)
C2 0.055(4) 0.062(4) 0.079(5) 0.002(3) 0.005(3) -0.025(3)
C3 0.056(4) 0.040(3) 0.048(3) -0.002(3) -0.004(3) -0.025(3)
C4 0.097(6) 0.061(4) 0.083(5) -0.026(4) 0.027(4) -0.044(4)
C5 0.062(4) 0.060(4) 0.053(4) -0.008(3) 0.000(3) -0.025(3)
C6 0.070(5) 0.073(5) 0.092(6) 0.013(4) -0.031(4) -0.027(4)
C7 0.173(10) 0.094(6) 0.032(4) -0.002(4) -0.004(5) -0.074(6)
C8 0.125(8) 0.088(6) 0.089(7) 0.011(5) -0.046(6) -0.062(6)
C9 0.053(3) 0.047(3) 0.050(3) -0.011(3) 0.001(3) -0.022(3)
C10 0.059(4) 0.052(3) 0.074(4) -0.016(3) 0.018(3) -0.022(3)
C11 \ 0.050(4) \ 0.044(3) \ 0.058(4) \ -0.015(3) \ 0.009(3) \ -0.011(3)
C12 \ 0.056(4) \ 0.062(4) \ 0.058(4) \ -0.012(3) \ -0.006(3) \ -0.012(3)
C13 \ 0.057(4) \ 0.064(4) \ 0.053(4) \ 0.001(3) \ -0.004(3) \ -0.014(3)
C14 \ 0.049(4) \ 0.091(5) \ 0.074(5) \ -0.016(4) \ 0.002(3) \ -0.019(4)
C15 0.088(5) 0.061(4) 0.049(4) -0.004(3) 0.007(4) -0.011(4)
C16 \ 0.071(5) \ 0.072(4) \ 0.067(5) \ -0.022(4) \ 0.024(4) \ -0.032(4)
```

```
C17 0.048(3) 0.055(3) 0.050(3) -0.014(3) 0.002(3) -0.017(3)
C18 0.067(4) 0.055(4) 0.066(4) -0.026(3) 0.014(3) -0.020(3)
C19 0.047(3) 0.050(3) 0.047(3) -0.016(3) -0.002(3) -0.006(3)
C20 0.068(4) 0.059(4) 0.072(5) -0.023(3) 0.013(4) -0.021(3)
C21 0.076(5) 0.057(4) 0.074(5) -0.018(3) 0.007(4) -0.015(3)
C22 0.079(5) 0.066(5) 0.095(6) -0.042(4) -0.011(5) 0.013(4)
C23 0.067(5) 0.096(6) 0.066(5) -0.019(4) 0.012(4) -0.020(4)
C24 0.057(4) 0.111(6) 0.060(5) -0.037(5) -0.002(4) 0.005(4)
C25 0.040(3) 0.050(3) 0.040(3) -0.004(2) -0.009(2) -0.012(2)
C26 0.054(4) 0.059(4) 0.057(4) 0.007(3) -0.017(3) -0.019(3)
C27 0.061(4) 0.037(3) 0.045(3) 0.005(2) -0.019(3) -0.015(3)
C28 0.068(4) 0.071(4) 0.046(4) -0.001(3) -0.012(3) -0.019(3)
C29 \ 0.066(4) \ 0.066(4) \ 0.060(4) \ -0.015(3) \ -0.010(4) \ -0.001(3)
C30 0.105(6) 0.084(5) 0.056(4) -0.002(4) -0.027(4) -0.042(5)
C31 0.047(4) 0.085(5) 0.098(6) -0.001(4) -0.011(4) 0.002(4)
C32 0.073(5) 0.070(5) 0.103(7) 0.019(4) -0.051(5) -0.029(4)
_geom_special_details
All esds (except the esd in the dihedral angle between two l.s. planes)
 are estimated using the full covariance matrix. The cell esds are taken
 into account individually in the estimation of esds in distances, angles
 and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate
(isotropic)
 treatment of cell esds is used for estimating esds involving l.s. planes.
;
loop
 _geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry 2
 _geom_bond_publ_flag
Aul Sel 2.3873(7) . ?
Aul Se2 2.3966(7) . ?
Au2 Se4 2.3909(6) . ?
Au2 Se3 2.3959(6) . ?
Sel P1 2.1785(15) 2 667 ?
Se2 P1 2.1739(15) . ?
Se3 P2 2.1833(14) 2 655 ?
Se4 P2 2.1780(15) . ?
P1 C9 1.810(6) . ?
P1 C1 1.812(6) . ?
P1 Se1 2.1785(15) 2 667 ?
P2 C17 1.816(6) . ?
P2 C25 1.818(5) . ?
P2 Se3 2.1833(14) 2 655 ?
C1 C2 1.496(8) . ?
C2 C3 1.482(8) . ?
C3 C5 1.364(8) . ?
C3 C4 1.402(9) . ?
C4 C7 1.396(11) . ?
C5 C6 1.380(9) . ?
C6 C8 1.319(12) . ?
C7 C8 1.336(12) . ?
C9 C10 1.530(8) . ?
C10 C11 1.510(8) . ?
C11 C12 1.369(8) . ?
C11 C13 1.380(8) . ?
```

C12 C15 1.381(9) . ?

C13 C14 1.361(9) . ? C14 C16 1.357(9) . ? C15 C16 1.363(9) . ? C17 C18 1.503(7) . ? C18 C19 1.524(8) . ? C19 C20 1.365(8) . ? C19 C21 1.370(8) . ? C20 C23 1.378(9) . ? C21 C22 1.373(9) . ? C22 C24 1.349(10) . ? C23 C24 1.350(10) . ? C25 C26 1.511(7) . ? C26 C27 1.512(7) . ? C27 C29 1.367(8) . ? C27 C28 1.374(8) . ? C28 C30 1.385(9) . ? C29 C31 1.385(9) . ? C30 C32 1.351(10) . ? C31 C32 1.367(11) . ? loop _geom_angle_atom_site_label 1 _geom_angle_atom_site_label 2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 geom_angle_publ_flag Sel Aul Se2 172.79(2) . . ? Se4 Au2 Se3 171.97(2) . . ? P1 Se1 Au1 102.17(4) 2 667 . ? P1 Se2 Au1 100.48(5) . . ? P2 Se3 Au2 99.94(4) 2_655 . ? P2 Se4 Au2 100.44(4) . ? C9 P1 C1 105.9(3) . . ? C9 P1 Se2 106.32(19) . . ? C1 P1 Se2 109.9(2) . . ? C9 P1 Se1 102.58(17) . 2 667 ? C1 P1 Se1 112.2(2) . 2_667 ? Se2 P1 Se1 118.73(7) . 2 667 ? C17 P2 C25 108.0(3) . . ? C17 P2 Se4 111.88(19) . . ? C25 P2 Se4 104.02(17) . . ? C17 P2 Se3 108.63(18) . 2 655 ? C25 P2 Se3 107.06(18) . 2 655 ? Se4 P2 Se3 116.70(6) . 2 655 ? C2 C1 P1 120.4(4) . . ? C3 C2 C1 115.4(5) . . ? C5 C3 C4 117.0(6) . . ? C5 C3 C2 124.0(6) . . ? C4 C3 C2 119.0(6) . . ? C7 C4 C3 119.7(7) . . ? C3 C5 C6 121.6(7) . . ? C8 C6 C5 120.1(8) . . ? C8 C7 C4 119.8(8) . . ? C6 C8 C7 121.7(8) . . ? C10 C9 P1 117.1(4) . . ? C11 C10 C9 111.5(4) . . ? C12 C11 C13 117.6(6) . . ? C12 C11 C10 121.0(6) . . ? C13 C11 C10 121.3(6) . . ?

C11	C12	C15	121.0	(6)	•	•	?		
C14	C13	C11	121.1	(6)			?		
C16	C14	C13	120.9	(6)	•		?		
C16	C15	C12	120.1	(6)	•		?		
C14	C16	C15	119.2	(6)	•		?		
C18	C17	P2 1	114.6(4)			?		
C17	C18	C19	115.4	(5)	•		?		
C20	C19	C21	117.4	(6)	•		?		
C20	C19	C18	123.6	(5)			?		
C21	C19	C18	118.9	(6)			?		
C19	C20	C23	120.7	(6)	•		?		
C19	C21	C22	120.9	(7)			?		
C24	C22	C21	121.5	(7)			?		
C24	C23	C20	121.5	(7)			?		
C22	C24	C23	118.0	(7)			?		
C26	C25	P2 1	115.5(4)		. 1	?		
C25	C26	C27	112.7	(5)			?		
C29	C27	C28	118.5	(6)			?		
C29	C27	C26	121.7	(5)			?		
C28	C27	C26	119.8	(6)			?		
C27	C28	C30	120.5	(7)			?		
C27	C29	C31	120.8	(7)			?		
C32	C30	C28	120.4	(7)			?		
C32	C31	C29	120.0	(7)			?		
C30	C32	C31	119.8	(7)			?		
di	ffrn	meas	sured	fra	cti	or	l .	theta max	0.999
di	ffrn	ref	lns th	eta	fu	11]	L	—	25.05
di	ffrn	meas	sured	fra	cti	or	l.	theta full	0.999
refine diff density max 1.332									
_refine_diff_density_min -0.750									
refine_diff_density_rms 0.111									
*_									

Figure S6. ESI_MS_data: ESI-mass spectra were recorded on a Fison Quattro Bio-Q (Fisons Instruments, VG Biotech, UK)

 $2.09 \times 10^{-4} M$ (in CH₂Cl₂) of Au₂[Se₂P(OEt)₂]₂.

