figshare
Browse
ldis_a_1417134_sm6309.doc (32.5 kB)

Structural properties of lecithin based reverse hexagonal (HII) liquid crystals and in vitro release of dihydromyricetin

Download (32.5 kB)
journal contribution
posted on 2018-01-08, 14:28 authored by Xuepeng Li, Yang Li, Zhongni Wang

Dihydromyricetin (DMY) was encapsulated to lecithin based reverse hexagonal (HII) liquid crystals to improve its solubility limitation. PEG 400 was used as the representative oil phase. The HII mesophases were identified by means of polarized light microscopy (POM) and small angle X-ray scattering (SAXS). The DMY was solubilized in interface layer inferred from the increase of the interfacial area of per surfactant as and the infrared spectra. The hexagonal samples showed highly elastic Maxwell properties and shear thinning properties indicated by their rheological spectra. Moreover with the decrease of PEG 400 content, the internal structure of samples apparently becomes more stable, as indicated by the increase in the storage and loss moduli and the decrease in as. Oleic acid enhances the viscoelasticity of sample and increases the release stability for DMY under acidic conditions. The in vitro release of DMY in HII matrices showed that carriers have an ideal sustained release effect. The release of DMY was controlled by concentration diffusion.

Funding

Support of this work by the Natural Science Foundation of China (31271933 and 31071603) is gratefully acknowledged.

History

Usage metrics

    Journal of Dispersion Science and Technology

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC