Spatial and halophyte-associated microbial communities in intertidal coastal region of India

Microbial communities in intertidal coastal soils respond to a variety of environmental factors related to resources availability, habitat characteristics, and vegetation. These intertidal soils of India are dominated with Salicornia brachiata, Aeluropus lagopoides, and Suaeda maritima halophytes, which play a significant role in carbon sequestration, nutrient cycling, and improving microenvironment. However, the relative contribution of edaphic factors, halophytes, rhizosphere, and bulk sediments on microbial community composition is poorly understood in the intertidal sediments. Here, we sampled rhizosphere and bulk sediments of three dominant halophytes (Salicornia, Aeluropus, and Suaeda) from five geographical locations of intertidal region of Gujarat, India. Sediment microbial community structure was characterized using phospholipid fatty acid (PLFA) profiling. Microbial biomass was significantly influenced by the pH, electrical conductivity, organic carbon, nitrogen, and sodium and potassium concentrations. Multivariate analysis of PLFA profiles had significantly separated the sediment microbial community composition of regional sampling sites, halophytes, rhizosphere, and bulk sediments. Sediments from Suaeda plants were characterized by higher abundance of PLFA biomarkers of Gram-negative, total bacteria, and actinomycetes than other halophytes. Significantly highest abundance of Gram-positive and fungal PLFAs was observed in sediments of Aeluropus and Salicornia, respectively than in those of Suaeda. The rhizospheric sediment had significantly higher abundance of Gram-negative and fungal PLFAs biomarkers compared to bulk sediment. The results of the present study contribute to our understanding of the relative importance of different edaphic and spatial factors and halophyte vegetation on sediment microbial community of intertidal sediments of coastal ecosystem.