Snout Shape in Extant Ruminants

2015-07-08T17:18:16Z (GMT) by Jon Tennant
<p>Snout shape is a prominent aspect of herbivore feeding ecology, interacting with both forage selectivity and intake rate. Previous investigations have suggested ruminant feeding styles can be discriminated via snout shape, with grazing and browsing species characterised by ‘blunt’ and ‘pointed’ snouts respectively, often with specification of an ‘intermediate’ sub-grouping to represent ambiguous feeding styles and/or morphologies. Snout shape morphology is analysed here using a geometric morphometric approach to compare the two-dimensional profiles of the premaxilla in ventral aspect for a large sample of modern ruminant species, for which feeding modes are known from secondary criteria. Results suggest that, when browsing and grazing ruminants are classified ecologically based on a range of feeding style indicators, they cannot be discriminated unambiguously on the basis of snout profile shape alone. Profile shapes in our sample form a continuum with substantial overlap between groupings and a diverse range of morphologies. Nevertheless, we obtained an 83.8 percent ratio of correct post hoc feeding style categorisations based on the proximity of projected profile shapes to group centroids in the discriminant space. Accordingly, this procedure for identifying species whose feeding strategy is ‘unknown’ can be used with a reasonable degree of confidence, especially if backed-up by additional information. Based on these results we also refine the definitions of snout shape varieties, taking advantage of the descriptive power that geometric morphometrics offers to characterize the morphological disparities observed. The shape variance exhibited by both browsing and grazing ruminants corresponds strongly to body mass, providing further evidence for an interaction between snout shape, feeding style, and body size evolution. Finally, by exploring the role of phylogenetic similarity in snout shape, we find a slight increase in successful categorisation when repeating the analysis with phylogenetic control on the geometric profiles.</p>