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Simple determination of the axial stiffness for large-
diameter independent wire rope core or ®bre core wire
ropes

M Raoof* and T J Davies
Civil and Building Engineering Department, Loughborough University, Loughborough, Leicestershire, UK

Abstract: Raoof and Kraincanic recently developed two somewhat different theoretical models for
analysing large-diameter wire ropes with either an independent wire rope core (IWRC) or a ®bre core.
Most importantly, unlike all of the previously available theories (with their often very lengthy
mathematical formulations), very encouraging correlations have been found between Raoof and
Kraincanic’s theoretical predictions of wire rope axial stiffnesses and a fairly large body of
experimental data from other sources, hence providing ample support for the reliability of both
theoretical models. Raoof and Kraincanic’s original models were, however, computer based and
involved certain iterative procedures. This potential drawback for practical applications (in an area
where, by tradition, the rule of thumb reigns supreme) is overcome in the present paper, which reports
details of some simpli®ed (but still accurate) procedures for predicting the no-slip and/or full-slip axial
stiffnesses of wire ropes with either an independent wire rope core or a ®bre core, with the proposed
formulations being amenable to simple hand calculations using a pocket calculator, which is of value
to busy practising engineers.
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NOTATION

ALi total cross-sectional area of the wires in
layer i of a strand

Aw cross-sectional area for an individual
round wire

dw diameter of round wires
Efull-slip, Eno-slip

full-slip and no-slip axial stiffnesses
respectively of a wire rope based on the
orthotropic sheet theory

Erope wire rope’s effective axial stiffness based
on Hruska’s approach

Esteel Young’s modulus for steel
H Hruska’s parameter ˆ Erope=Esteel

M total number of strands in a wire rope
n total number of layers of wires in a strand

including the king wire (layer number 1)
nw number of wires in a layer of spiral strand

ai lay angle of layer i in a strand with the
king wire being layer number 1

bj lay angle of a strand in layer j of the wire
rope

1 INTRODUCTION

During the past two decades or so, considerable interest
has been shown in the mechanical characteristics of
helically wound steel cables (spiral strands and/or wire
ropes) for use in both onshore and offshore applica-
tions. At this point, it is probably worthwhile explaining
the main difference between a spiral strand and a wire
rope. A spiral strand is a group of wires laid helically in
successive layers over a central straight king wire (or
equal lay core), while a wire rope consists of (typically)
six strands laid helically over a central core which may
itself consist of a smaller independent wire rope (IWRC)
or twisted ®bres (FC) (Fig. 1). Wire ropes and/or spiral
strands are used extensively in bridge design and as
tension members for suspended and stayed structures
generally. With reference to the offshore industry, there
has been a growing need for longer and stronger cables,
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with increasingly larger outside diameters, for use as
components in mooring systems for, for example, oil
exploration and production platforms. The decision as
to whether a spiral strand or a wire rope should be used
is dependent upon the intended type of application.
Wire rope is a little more ¯exible axially than a spiral
strand, but considerably more ¯exible in bending, which
is why wire ropes are used as tractive elements over
pulleys, winch drums and fairleads in mines and cable
cars (among others).

As regards the mathematical modelling of wire ropes,
back in the 1980s encouraging progress was made by
Costello and his associates (e.g. references [1] to [3]),
Velinsky [4, 5], Lee et al. [6] and Lee [7, 8]. All these
theoretical developments for wire ropes have, however,
ignored the important effects of interwire friction and
contact deformations: both of these effects are fully

catered for by Raoof and Kraincanic [9], who have also
demonstrated that, for example, Velinsky et al.’s [2]
predictions of axial stiffness for wire ropes with an
IWRC, which are based on largely the same basic
assumptions as those adopted by Costello and his other
associates (e.g. references [1] and [3]), are not supported
by the carefully conducted large-scale experiments of
Strzemiecki and Hobbs [10] on a 40 mm outside
diameter wire rope with an IWRC, with the length of
the specimens ranging from 2.9 to 7.16 m. Jiang [11] has
also reported a frictionless theoretical model for wire
ropes with an IWRC, the predictions of which are very
close to those of the theoretical model proposed by
Velinsky et al. [2], with both models suffering from
similar limitations.

Raoof and Hobbs [12] have developed the orthotropic
sheet theoretical model: this concept is capable of
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Fig. 1 A typical six-stranded wire rope with: (a) an independent wire rope core (IWRC) (after Lee [8]) and
(b) a ®bre core (after Velinsky [5])
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predicting, with a good degree of accuracy, the
mechanical characteristics of spiral strands under not
just static monotonic loading (which, incidentally, is the
type of loading the previously reported frictionless
theoretical models have primarily been developed for)
but also when the strands experience cyclic loading. The
results from the orthotropic sheet concept were subse-
quently used by Raoof and Kraincanic [9, 13] to develop
two somewhat different theoretical models for analysing
the various stiffness characteristics of wire ropes with
either a ®bre or an independent wire rope core.

As originally shown by Raoof and Hobbs [12], in
repeated (cyclic) loading regimes, due to the presence of
interwire friction, the effective axial stiffness of axially
preloaded spiral strands (with their ends ®xed against
rotation) varies (as a function of the externally applied
axial load perturbations/mean axial load) between two
limits. The axial stiffnesses for small axial load changes
(cf. the mean axial load) were shown to be signi®cantly
larger than for large axial load changes (associated with
which gross slippage takes place between the wires in the
line contact) because, for suf®ciently small external axial
load disturbances and in the presence of interwire
friction, the helical wires stick together and the axially
preloaded cable will effectively behave as a solid rod
(with allowance being made for the presence of gaps
between the individual wires). The upper and lower
bounds to the axial stiffnesses were, therefore, referred
to as the no-slip and full-slip types respectively. The
same terminology was also adopted by Raoof and
Kraincanic [9, 13] in their theoretical treatment of wire
ropes, which, as experimentally demonstrated by Strze-
miecki and Hobbs [10], also exhibit the limiting no-slip
and full-slip axial stiffness characteristics, when experi-
encing cyclic axial load perturbations superimposed on a
mean axial preload.

In another publication, Raoof [14], based on the
results from an extensive series of theoretical parametric
studies using a wide range of large-diameter spiral
strand constructions, in conjunction with Hruska’s [15]
simple formulations, presented straightforward routines,
based on the orthotropic sheet model, for estimating the
no-slip and full-slip axial moduli of axially preloaded
spiral strands, with any construction details. Raoof [14]
also showed that, primarily because of the inclusion of
the strands’ diametral contractions in the orthotropic
sheet theory, the estimates of full-slip axial stiffness
based on this model are signi®cantly lower than those
based on Hruska’s approach.

The original theoretical models of Raoof and
Kraincanic for wire ropes [9, 13], although being very
reliable, suffer from the potential drawback of being
mathematically rather complex. Developing simple
routines, which are amenable to hand calculations using
a pocket calculator, similar to those for spiral strands, as
already reported by Raoof [14], is therefore highly
desirable and forms the purpose of the present paper. In

what follows, based on an extension of the work of
Strzemiecki and Hobbs [10], in conjunction with
numerical results based on Raoof and Kraincanic’s
models [9, 13], simple formulations will be developed for
estimating the no-slip and full-slip axial stiffnesses of
wire ropes, with either a ®bre or an independent wire
rope core, which should prove of value to busy
practising engineers.

2 SIMPLIFIED METHODS

2.1 Hruska’s approach

The general form of Hruska’s equation, proposed by
Strzemiecki and Hobbs [10], for the determination of the
axial stiffness of a wire rope, Erope, is (in the present
notation)

H ˆ Erope

Esteel

ˆ

PM

jˆ1

Pn

iˆ1

ALi
cos3 ai

³ ´
cos3 bj

PM

jˆ1

Pn

iˆ1

ALi
= cos ai

³ ´
= cos bj

…1†

where Esteel is the Young’s modulus of steel, M is the
total number of strands in the rope, n is the total number
of layers of wires in each strand (including the king
wire), ALi

is the total cross-sectional area of the wires
(which can have different diameters, even in a given
layer) in layer i of a strand (with the king wire being
layer number 1), ai is the lay angle of layer i in a strand
and bj is the lay angle of a strand in layer j of the rope. It
should be noted that the denominator in equation (1) is
equal to the total net steel area in the wire rope’s normal
cross-section, with the shapes of individual round wires
and spiral strands in the wire rope’s normal cross-
section being elliptical [9, 13] and the central (king) wire
in each spiral strand having a1 ˆ 0.

According to equation (1), the dominant parameters
controlling the rope axial stiffness are the lay angles …bj†
of the strands in the wire rope and also the lay angles
…ai† of the steel wires forming the individual spiral
strands, with the parameter ALi

also playing a role.

2.2 Parameters used in the calculations

The numerical data relating to both the no-slip and full-
slip axial stiffnesses, based on the work of Raoof and
Kraincanic [9, 13], on a number of wire ropes with ®bre
or independent wire rope cores, has been used in what
follows. The ®bre core wire ropes had outside diameters
of 9.53 and 40.5 mm and were analysed assuming both a
regular lay (RL) and a Lang lay (LL) type of
construction. A Lang lay rope is the type in which the
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directions of the lay of the individual wires in the outer
strands and that of the outer strands in the rope are the
same. If the lay directions of the wires and the strands
are the opposite of each other, then the rope is of a
regular lay type. It should be noted that the `Hruska’
stiffnesses, as calculated by equation (1), are the same,
regardless of the type of lay. The wire ropes with
independent wire rope cores had outside diameters of
33, 40, 55.6 and 76 mm. Two 76 mm outside diameter
wire ropes were used in the analysis: a reasonably
fully bedded-in (comparator) wire rope and a new wire
rope.

The results, after Raoof and Kraincanic [13], for the
®bre core wire ropes have been obtained assuming two
different patterns (cases) of interstrand contacts: case 1,
where the strands in the wire rope are assumed to be just
touching each other in line contact, in an unstressed
condition, so that the interstrand contacts in the hoop
direction (with a higher normal stiffness compared to
that in the radial direction) govern the diametral
contraction of the rope; and case 2, where the strands
in the wire rope are assumed to be resting on the ®bre
core, in the presence of signi®cant gaps between the
adjacent strands, so that the wire rope experiences radial
deformations due to ®bre core compliance.

The exact details of the theoretical model, relating to
each case of interstrand contacts in wire ropes with ®bre
cores, are reported by Raoof and Kraincanic [13].
Moreover, the construction details of the wire ropes
used in the present work, in conjunction with the
calculation details of the Hruska’s axial stiffnesses, are
given elsewhere [16]. Alternatively, the full construction
details for the individual wire ropes may be found in
references [2], [10] and [17] to [19].

2.3 Results

Table 1 presents a summary of the ®nal estimates of the
axial stiffnesses, based on Hruska’s approach, for each
of the seven different wire rope constructions, as well as
the numerical results for both the no-slip and full-slip
axial stiffnesses, as reported by Raoof and Kraincanic
[9, 13] and later on by Kraincanic and Hobbs [17], based
on the considerably more complex (although more
accurate) models of Raoof and Kraincanic [9, 13].
Table 2, as a typical example, gives the full construction
details and calculation routines for Hruska’s axial
stiffness prediction of the 76 mm (comparator) outside
diameter wire rope with an IWRC. The calculation
routines for Hruska’s axial stiffness, H, of wire ropes
with ®bre cores are exactly the same as those for wire
ropes with an IWRC, with the proviso that in the former
the contribution of the ®bre core to axial stiffness, H, is
assumed to be zero; i.e. only the contributions from the
outer strands should be included. The predictions of
wire rope axial stiffness in Table 1 are all based on the
total net steel area [9, 13], the values of which for the
individual wire ropes are also included in the last
column of this table. Table 3, on the other hand,
presents values of the corresponding experimentally
determined axial stiffnesses, where available, as well as
the ratios of predicted/experimental results (for Eno-slip

and Efull-slip) with the predictions (as given in Table 1) of
Eno-slip and Efull-slip based on Raoof and Kraincanic’s
models for wire ropes with an IWRC or ®bre core; the
correlations between theory (which assumes a constant
Esteel ˆ 200kN/mm2 for all the wire rope constructions
studied) and experiments are very encouraging. In
particular, it is important to note that for the two types
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Table 1 Summary of the numerical results for the axial stiffnesses as calculated using Hruska’s simple
formula and the models proposed by Raoof and Kraincanic (Esteelˆ 200kN/mm2)

Raoof and Kraincanic

Type of core
construction*

Rope outside
diameter (mm)

Hruska
Erope=Esteel Eno-slip/Esteel Efull-slip/Esteel Eno-slip/Efull-slip

Total net steel
area (mm2)

IWRC 33 0.657 0.561 0.478 1.174 518.46
IWRC 40 0.685 0.623 0.537 1.158 838.56
IWRC 55.6 0.802 0.779 0.714 1.092 1633.91
IWRC 76 0.754 0.708 0.646 1.096 3032.95
IWRC 76 (comparator) 0.718 0.654 0.583 1.122 2881.90

Case 1
FC (RL) 9.53 0.701 0.714 0.654 1.092 39.65
FC (RL) 40.5 0.760 0.778 0.729 1.068 689.96
FC (LL) 9.53 0.701 0.701 0.636 1.102 39.65
FC (LL) 40.5 0.760 0.763 0.708 1.077 689.96

Case 2
FC (RL) 9.53 0.701 0.658 0.608 1.081 39.65
FC (RL) 40.5 0.760 0.732 0.689 1.063 689.96
FC (LL) 9.53 0.701 0.652 0.600 1.086 39.65
FC (LL) 40.5 0.760 0.722 0.675 1.069 689.96

* FC, ®bre core; LL, Lang’s lay; RL, regular lay.
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of wire ropes with an IWRC for which the measured
values of both the Eno-slip and Efull-slip are available, the
correlations between the theory and test data (as regards
both the upper and lower bounds to the wire rope axial
stiffness) are, indeed, excellent, reinforcing the fact that
such remarkable correlations are not due to mere
coincidence (i.e. by chance); in other words, the
presently assumed value of Esteel (ˆ 200kN/mm2) has
not been used as a convenient ®ddle factor.

Similar to the ®ndings of Raoof [14] in the context of
spiral strands, in Raoof and Kraincanic’s models for wire
ropes [9, 13], unlike the no-slip axial stiffness which is
slightly dependent on the value of mean axial load, the
full-slip axial stiffness is, in general, independent of the
mean axial load, with both of these limiting (i.e. upper and
lower bounds) values of axial stiffness being independent
of the magnitude of the interwire coef®cient of friction.

Furthermore, it is, perhaps, worth mentioning that the
values of axial stiffness as traditionally quoted by the
manufacturers, based on their shop measurements, are
invariably the full-slip ones (in the present terminology),
because of the large axial load ranges involved.

Figures 2 and 3 show the relationship between the
full-slip axial stiffnesses as calculated using the simple
formula of Hruska and Raoof and Kraincanic’s [9, 13]
models for all of the different wire rope constructions,
relating to the results of cases 1 and 2 for the ropes with
®bre cores respectively. Figure 4 shows similar correla-
tions, but with the data relating to the ®bre core wire
ropes omitted.

Figures 5 and 6 present the relationships between the
Efull-slip =Esteel and the Eno-slip=Efull-slip ratios, as calcu-
lated using Raoof and Kraincanic’s [9, 13] models for
wire ropes with ®bre cores (cases 1 and 2 respectively) or

3B2 Version Number 7.51a/W (May 2 2001) j:/Jobsin/M11069/S04703.3d Date: 28/10/03 Time 09:13am Page 581 of 586

Table 2 Construction details and calculation routines for Hruska’s axial stiffness of the 76 mm (comparator) outside diameter
(IWRC) wire rope ‰…Erope=Esteel†full-slipˆ 2068:407=2881:899 ˆ 0:7177Š

1 2 3 4 5 6 7 8 9 10 11 12
Layer in
the rope

Number of
strands N

bj

(deg)
Layer in
the strand nw wires

dw

(mm)
Aw

(mm2)
ai

(degrees) nwAw/cos ai nwAw6 cos3 ai

N 6
P

(9)/
cos bj

N 6
P

(10) 6
cos3bj

Core (1)
King strand

1 0 Core (1) 1 3.9 11.946 0 11.946 11.946
2 6 3.54 9.842 14.84 61.091 53.339

Totals 73.037 65.285 73.037 65.285
IWRC strands
(2)

6 18.11 Core (1) 1 3.34 8.762 0 8.762 8.762
2 6 3.1 7.548 14.84 46.849 40.904

Totals 55.610 49.666 351.052 255.864

Outer strands
(3)

6 18.24 Core (1) 1 5.8 26.421 0 26.421 26.421
2 8 3.5 9.621 ¡9.53 78.046 73.826
3 8 2.4 4.524 ¡13.91 37.285 33.100

8 3.2 8.042 ¡13.07 66.051 59.468
4 16 3.7 10.752 ¡18.35 181.250 147.102

Totals 389.052 339.917 2457.810 1747.257
Grand totals 2881.899 2068.407

Table 3 Summary of the experimentally determined results for the axial stiffnesses of the various wire rope constructions

Experimental results Predicted/experimental{

Type of core
construction

Rope diameter
(mm)

Source of experimental
results

Eno-slip
¤/

Esteel

Efull-slip
¤/

Esteel

Eno-slip/
Efull-slip

For
Efull-slip

For
Eno-slip

IWRC 33 Velinsky et al. [2] Ð 0.530 Ð 0.90 Ð
IWRC 40 Strzemiecki and Hobbs [10] 0.625 0.545 1.146 0.99 0.997
IWRC 76 Kraincanic and Hobbs [17] 0.685 0.653 1.049

0.722 0.678 1.065
0.723 0.652 1.109
0.819 0.663 1.235

Average 0.738 0.662 1.115 0.96 0.98
IWRC 76 (comparator) Raoof and Kraincanic [18] Ð 0.566 Ð 1.03 Ð

Case 1
FC (RL) 9.53 Velinsky [5] Ð 0.692 Ð 0.95 Ð
FC (RL) 40.5 Cantin et al. [19] Ð Ð Ð Ð Ð
FC (LL) 9.53 Velinsky [5] Ð Ð Ð Ð Ð
FC (LL) 40.5 Cantin et al. [19] Ð 0.730±0.794 Ð 0.93 Ð

Case 2
FC (RL) 9.53 Velinsky [5] Ð 0.692 Ð 0.88 Ð
FC (RL) 40.5 Cantin et al. [19] Ð Ð Ð Ð Ð
FC (LL) 9.53 Velinsky [5] Ð Ð Ð Ð Ð
FC (LL) 40.5 Cantin et al. [19] Ð 0.730±0.794 Ð 0.88 Ð

*Assumed Esteel ˆ 200kN/mm2.
{In connection with the experimental results with some reported scatter, the mean of the test results has been used.
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an IWRC. Figure 7 presents similar correlations, but
with the data relating to the ®bre core wire ropes
omitted.

2.4 Simple formulations

Using the results presented in the previous section, a
simple method for determining the full-slip and no-slip
axial stiffnesses of wire ropes with either ®bre cores or
an IWRC can be developed by ®tting various non-linear

curves (de®ned by second-order polynomials) through
the data. In Figs 2, 3 and 4, Hruska’s simple parameter
H is given by equation (1), as developed by Strzemiecki
and Hobbs [10]. Once H is calculated, the full-slip axial
stiffness, based on the more accurate models of Raoof
and Kraincanic, may be found using a second-order
polynomial of the general form

Efull-slip

Esteel

ˆ A…H2† ‡ B…H† ‡ C …2†

where the constant coef®cients A to C are given in
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Fig. 2 Relationship between the full-slip E values for various wire rope constructions with either a ®bre core
(case 1) or an IWRC as calculated using Raoof and Kraincanic’s models and Hruska’s formula

Fig. 3 Relationship between the full-slip E values for various wire rope constructions with either a ®bre core
(case 2) or an IWRC as calculated using Raoof and Kraincanic’s models and Hruska’s formula
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Table 4 and correspond to the situation as to whether
the ®bre core wire ropes are to be included (Figs 2 and 3)
or not (Fig. 4), and, if included, which different pattern
of interstrand contacts for the ropes with ®bre cores
(i.e. whether case 1 or 2, as de®ned previously) is to be
considered.

Turning to the no-slip case, Figs 5, 6 and 7 show the
theoretical relationships between the no-slip and full-slip
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Fig. 4 Relationship between the full-slip E values for the wire ropes with an IWRC as calculated using Raoof
and Kraincanic’s model and Hruska’s formula

Fig. 5 Relationship between the full-slip and no-slip E values for various wire rope constructions with either
a ®bre core (case 1) or an IWRC as calculated using Raoof and Kraincanic’s models

Table 4 Values of the constant coef®cients A to C in equation
(2) for all of the ®tted curves in Figs 2, 3 and 4, along
with the correlation coef®cients, R

Reference A B C R

Fig. 2 ¡0.9099 2.9095 ¡1.00 0.870
Fig. 3 ¡0.6275 2.4872 ¡0.86 0.957
Fig. 4 ¡0.4913 2.3228 ¡0.83 0.998
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moduli, with the individual numerical results having
been found to be very nearly independent of the level of
mean axial load on the cable (over the working load
ranges). Denoting Efull-slip=Esteel ˆ k1, ®tted curves
de®ned by second-order polynomials of the general form

Eno-slip

Efull-slip

ˆ E…k2
1† ‡ Fk1 ‡ G …3†

provide a simple means of ®nding the no-slip axial

stiffness, once the corresponding full-slip axial
stiffness has been found, depending upon whether
the ®bre core wire ropes are to be included (Figs 5
and 6) in the analysis or not (Fig. 7), and, if
included, whether case 1 or 2 is to be adopted for
the pattern of interstrand contacts in relation to the
wire ropes with ®bre cores. The values of the
constant coef®cients E to G in equation (3) are
given in Table 5, along with the correlation
coef®cients, R.
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Fig. 6 Relationship between the full-slip and no-slip E values for various wire rope constructions with either
a ®bre core (case 2) or an IWRC as calculated using Raoof and Kraincanic’s models

Fig. 7 Relationship between the full-slip and no-slip E values for various wire rope constructions with IWRC
as calculated using Raoof and Kraincanic’s model
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3 DISCUSSION

Similar to the results for spiral strands, based on the
orthotropic sheet theory, the results for the axial
stiffnesses of wire ropes with either ®bre cores or an
IWRC, based on Raoof and Kraincanic’s models, were
found to give signi®cantly lower Efull-slip values than
those based on Hruska’s simple approach, with the lay
angles playing a primary (controlling) role.

Comparing Figs 2 and 3, it is found that the
theoretical data are less scattered around the ®tted
curve when the ®bre core wire ropes are analysed
assuming that the strands in the wire rope are resting on
the ®bre core (case 2), in contrast to the situation when
the strands in the wire rope are assumed to be just
touching each other in the line contact (case 1). On the
other hand, the opposite is found when comparing Figs
5 and 6, where the scatter of the data points about the
®tted curves is less for case 1 (cf. case 2) of interstrand
contacts in wire ropes with a ®bre core.

With the data for the ®bre core wire ropes omitted
from the plots, the degree of scatter around the ®tted
curves is signi®cantly less (refer to Fig. 4 and Fig. 7) with
the ®tted mean curve(s) very nearly passing through all
the theoretical data points, which cover a rather wide

range of wire rope diameters and lay angles. This, then,
suggests that the wire rope axial stiffness is determined
by the lay angles of the wires in the strands and of the
strands in the rope, with the other geometrical
parameters having a second-order effect.

Table 6 presents a comparison between the predic-
tions based on the quick calculation methods and the
experimental results that are available, where the
correlations in the case of wire ropes with an IWRC
are, indeed, very good. As regards the wire ropes with
®bre cores, the correlations are reasonable. It should be
noted that, strictly speaking, the theoretical models of
Raoof and Kraincanic have both been developed for
large-diameter wire ropes: this is probably the
underlying reason for the relatively larger discrepancies
(cf. other cases in Table 6) between theory and test data
for the smaller 9.53 mm diameter wire rope with a ®bre
core.

Finally, the question may arise as to the accuracy that
is required in these stiffness calculations at the design
stage when such large-diameter wire ropes are used in
engineering applications. Because of the wide variety of
their common types of application (each of which
imposes its own peculiar requirements), the required
accuracy very much depends on the intended type of
application. For the present purposes, it perhaps suf®ces
to say that the very accurate estimates of axial stiffness
required for wire ropes with an IWRC in, for example,
the ®eld of structural engineering may now be obtained,
with minimal effort, by using the ®tted polynomials to
the data in Figs 4 and 7. As far as wire ropes with ®bre
cores are concerned, however, what is commonly
required in practice is a reasonable (as opposed to
very accurate) estimate of their axial stiffness, and in
this respect the accuracy of the presently proposed
method(s) is certainly suf®cient to meet such practical
requirements.
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Table 5 Values of the constant coef®cients E to G in equation
(3) for all of the ®tted curves in Figs 5, 6 and 7, along
with the correlation coef®cients, R

Reference E F G R

Fig. 5 0.2855 ¡0.7563 1.471 0.9763
Fig. 6 0.4043 ¡0.9180 1.514 0.8893
Fig. 7 0.1656 ¡0.5759 1.410 0.9654

Table 6 Comparison between the predictions based on the quick calculation method(s) and the
available experimental results

Experimental results Predicted values (using the appropriate polynomials)

Type of core
construction

Rope outside
diameter (mm)

Eno¡slip=
Esteel

Efull¡slip=
Esteel

Eno¡slip=
Esteel

Efull¡slip=Esteel

…ˆ k1†
Figure numbers for the
appropriate polynomials

IWRC 33 Ð 0.530 0.566 0.484 7 and 4
IWRC 40 0.625 0.545 0.611 0.531
IWRC 76 0.738* 0.662* 0.712 0.642
IWRC 76 (comparator) Ð 0.566 0.660 0.584

Case 1
FC (RL) 9.53 Ð 0.692 0.665 0.592 5 and 2
FC (LL) 40.5 Ð 0.730±0.794 0.745 0.685

Case 2
FC (RL) 9.53 Ð 0.692 0.644 0.575 6 and 3
FC (LL) 40.5 Ð 0.730±0.794 0.722 0.668

* The average of the corresponding experimental data as given in Table 3.
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4 CONCLUSIONS

Numerical data, based on Raoof and Kraincanic’s
models, have been used to produce simple design
procedures in relation to the upper (no-slip) and lower
(full-slip) bounds to the axial stiffness of wire ropes with
either ®bre or independent wire rope cores. Most
importantly, unlike all of the previously available
theories (with their often very lengthy mathematical
formulations), the available experimental data on a wide
range of wire rope constructions have been found to
provide encouraging support for the present theoretical
predictions which fully cater for the important effects
(totally ignored in the previously available theories) of
interwire friction and contact deformations.

The present work clearly demonstrates that, using the
simple formulation of Hruska, higher values of the full-
slip axial stiffness are obtained when compared to the
more re®ned models of Raoof and Kraincanic. With this
borne in mind, a simple method has been proposed by
means of which the no-slip and full-slip axial stiffnesses
of axially preloaded large-diameter wire ropes, with
either a ®bre core or an IWRC experiencing super-
imposed cyclic axial load perturbations, may be
estimated. The proposed method, which can also handle
the simpler case of static monotonic loading with its
associated constant (full-slip) axial stiffness, is based on
the remarkable correlations found between the predic-
tions of the axial stiffnesses as obtained from Hruska’s
and Raoof and Kraincanic’s approaches, strongly
suggesting that the lay angles (both of the wires in the
strands and the strands in the rope) are the prime
(controlling) parameters, with the cross-sectional areas
of the individual wires also playing a role. The presently
proposed method is amenable to simple hand calcula-
tions, using a pocket calculator, and is hence of value to
busy practising engineers using the wire ropes in both
onshore and offshore applications, where (as far as wire
ropes are concerned) by tradition the rule of thumb
reigns supreme.
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