figshare
Browse
nn6b02727_si_001.pdf (3.11 MB)

Silicon Diphosphide: A Si-Based Three-Dimensional Crystalline Framework as a High-Performance Li-Ion Battery Anode

Download (3.11 MB)
journal contribution
posted on 2016-05-31, 00:00 authored by Hyuk-Tae Kwon, Churl Kyoung Lee, Ki-Joon Jeon, Cheol-Min Park
The development of an electrode material for rechargeable Li-ion batteries (LIBs) and the understanding of its reaction mechanism play key roles in enhancing the electrochemical characteristics of LIBs for use in various portable electronics and electric vehicles. Here, we report a three-dimensional (3D) crystalline-framework-structured silicon diphosphide (SiP2) and its interesting electrochemical behaviors for superior LIBs. During Li insertion in the SiP2, a three-step electrochemical reaction mechanism, sequentially comprised of a topotactic transition (0.55–2 V), an amorphization (0.25–2 V), and a conversion (0–2 V), was thoroughly analyzed. On the basis of the three-step electrochemical reaction mechanism, excellent electrochemical properties, such as high initial capacities, high initial Coulombic efficiencies, stable cycle behaviors, and fast-rate capabilities, were attained from the preparation of a nanostructured SiP2/C composite. This 3D crystalline-framework-structured SiP2 compound will be a promising alternative anode material in the realization and mass production of excellent, rechargeable LIBs.

History

Usage metrics

    ACS Nano

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC