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Abstract: 

The appearance and disappearance of short-lived large-amplitude pulses in a nonlinear long 

wave model is studied in the framework of the modified Korteweg-de Vries equation. The major 

mechanism of such wave generation is modulational instability leading to the generation and 

interaction of the breathers. The properties of breathers are studied both within the modified 

Korteweg -de Vries equation, and also within the nonlinear Schrödinger equation derived by an 

asymptotic reduction from the modified Korteweg -de Vries for weakly nonlinear wave packets, 

The associated spectral problems (AKNS or Zakharov-Shabat) of the inverse-scattering 

transform technique also utilized.  Wave formation due to this modulational instability is 

investigated for localized and for periodic disturbances. Nonlinear-dispersive focusing is 

identified as a possible mechanism for the formation of anomalously large pulses. 

 

 



1. Introduction 
The modified Korteweg -de Vries (mKdV) equation 
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is a well-known canonical model nonlinear wave equation in mathematical physics. It can be 

solved exactly by the inverse-scattering transform method for either sign of the coefficient of the 

nonlinear term in (1) (Lamb, 1980; Ablowitz and Clarkson, 1991). This equation with a positive 

coefficient as in (1) appears in applications to various physical problems: meandering barotropic 

jets (Nycander et al, 1993; Ralph and Pratt, 1994), internal waves in stratified fluids (Grimshaw 

et al, 1997; Talipova et al, 1999), nonlinear Alfvén waves propagating along the ambient 

magnetic field (Kakutani and Ono, 1969; Mjølhus, 1989; Mjølhus and Hada, 1997), and 

nonlinear waves in a distributed Schottky barrier diode transmission lines (Zieger et al, 2001). 

The “positive” modified Korteweg-de Vries equation has elementary solutions (see, for instance, 

Lamb, 1980) in the form of solitary waves of either polarity (that is,  the soliton amplitude can 

take either sign) 

a

 

   u ( x , t ) = a sech a x − a 2 t( )[ ],                                          (2) 

 

and breathers (oscillatory wave packets)  
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There are also singular solutions (positons, compacton-like and solitary patterns-like solutions, 

see Matveev, 2002, Wazwaz, 2003) but their physical meaning is not evident. 

Recently, Clarke et al (2000) solved the Cauchy problem for the modified Korteweg-de Vries 

(1) for the localized disturbances (that is, disturbances vanishing at infinity) and determined 

conditions for the formation of solitons (2) and breathers (3). The dynamics of almost periodic 

perturbations has received much less attention. Among the results concerning periodic and 
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almost periodic initial perturbations we can mention the study of modulational instability of 

periodic (“cnoidal”) waves by Driscoll and O’Neil (1976). They showed that periodic waves 

with a zero mean value (that is, no pedestal) are unstable with respect to long-wave modulations.  

The parameters of this instability (the increment and range of wavenumbers) were calculated in 

the small-amplitude approximation. These results for small-amplitude waves have been 

confirmed in the framework of the nonlinear Schrodinger equation derived by asymptotic 

reduction from the modified Korteweg -de Vries equation (Parkes, 1987; Grimshaw et al, 2001). 

It is important to point out that the nonlinear Schrodinger equation is itself a very well-studied 

nonlinear evolution equation. An important result in the framework of this equation is that the 

evolution of a weakly modulated wavetrain may lead to the generation of short-lived large-

amplitude pulses called in oceanic applications, freak or rogue waves (Dysthe and Trulsen, 

1999; Osborne al, 2000; Ablowitz et al, 2001; Kharif et al, 2001; Calini and Schober, 2002; 

Slunyaev et al, 2002; Kharif and Pelinovsky, 2003). The main aim of this present study is to 

analyze the unsteady wave dynamics and anomalous wave behaviour in the framework of the 

modified Korteweg-de Vries equation (1) for a wide range of the wave parameters, and to 

compare it with the corresponding predictions of the weakly nonlinear model based on the 

nonlinear Schrodinger equation. 

 

2. Theoretical background 

According to the solution of the initial-value problem for the modified Korteweg-de Vries 

equation (1) obtained from the inverse-scattering transform method, any localized initial 

disturbance of finite energy (that is, vanishes sufficiently fast at infinity) evolves into a set of 

solitons, breathers and a dispersive wave train. The solitons and breathers can be obtained 

through the Ablowitz-Kaup-Newell-Segur (AKNS) or Zakharov-Shabat schemes (Lamb, 1980; 

Ablowitz and Clarkson, 1991) 
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where u(x) is an initial disturbance, and λ is a complex-valued eigenvalue. If the initial 

disturbance vanishes rapidly at infinity, the spectrum of this associated problem (4) can contain 

discrete eigenvalues.  A real eigenvalue corresponds to the solitary wave (2) with amplitude a = 

2λ, while the complex discrete eigenvalue, λ = q ± ip, corresponds to a breather (3). A detailed 

investigation of the generation of solitons and breathers from various piecewise-constant 

localized initial disturbances has been carried out by Clarke et al (2000). The solitons and 

breathers generated from such localized disturbances have different velocities and the initial 

disturbance fissions into separated waves. Note that the interaction of solitons and breathers is 

elastic, so that they “push off” each other. As a result, they cannot form groups, and so induce 

the appearance of very large-amplitude pulses (freak waves) due to the collision of solitons and 

breathers.  

If an initial disturbance is wide enough, or does not vanish at infinity, the character of the wave 

dynamics is more complicated. In the particular case of periodic boundary conditions the 

elementary solution of the modified Korteweg -de Vries equation (1) is the cnoidal wave   
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where cn(θ,s) is the Jacobi elliptic function with the modulus  (0 < s < 1).  In the 

approximation of weak nonlinearity (s << 1) the wave shape is sinusoidal and the wave 

propagates to the left, while strongly nonlinear waves  (s → 1) are similar to a lattice of solitons 

of opposite polarities and propagate to the right. For the domain of length L

s

 with periodic 

boundary conditions (as is typical in numerical simulations), the wave number, k, and module, s, 

are related by  
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where K(s) is the elliptic integral of the first kind. The wave amplitude is determined by the 

module s, which is a free parameter. 

Using the inverse-scattering transform technique (or the Hirota bilinear method) the nonlinear 

superposition of cnoidal waves (the so called N-degree of freedom cnoidal wave solutions) can 

also be obtained. These solutions correspond to a multi-zonal potential in the associated spectral 

problem (4).  Importantly for applications the cnoidal wave is unstable with respect to long-
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wave modulations (Driscoll and O’Neil, 1976). This result holds for the cnoidal wave (5) for 

any value of the modulus s. However, the nonlinear regime of this modulational instability of 

cnoidal waves has not been investigated.  

The behavior of weakly nonlinear packets can be analyzed in detail using the nonlinear 

Schrodinger equation (NLS), which can be derived by asymptotic reduction from the modified 

Korteweg-de Vries equation (Lamb, 1980; Parkes, 1987; Grimshaw et al, 2001). Thus, on 

representing the wave field as the Fourier series 
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and using the well-known asymptotic procedure, the following equation for the complex 

envelope can be derived at the leading order (Lamb, 1980; Parkes, 1987; Grimshaw et al, 2001) 

  

AA
X

A
T
Ai 2

2

2

||2+
∂
∂

=
∂
∂ .                                                      (8) 

 

In fact, the small parameter, ε characterizes the ratio between the envelope wavenumber, K and 

the carrier wavenumber k, so that ε = K/k. Also, we should mention that the amplitude 

modulation of the wave field  (due to its reality) is 

 

|),(|2),( TXATXa = .                                                           (9) 

 

The NLS equation is also a canonical model nonlinear wave equation in mathematical physics, 

and it has been studied in great detail. For a positive coefficient of the nonlinear term in the 

modified Korteweg-de Vries equation, the NLS equation (8) is the “focusing” nonlinear 

Schrodinger equation. In this case a monochromatic wave of amplitude A0 is unstable with 

respect to a long-wavelength envelope perturbation with the wave numbers ∆k satisfying 
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0max 2AKk =<∆ .                                                           (10) 

 

The maximum growth rate of this instability is 

 
2
02A=γ ,                                                             (11) 

 

and it is attained for ∆k=Kmax/√2. The existence of unstable modes in the NLS equation results 

in  very complicated nonlinear dynamics of wave packets (see Osborne al, 2000; Ablowitz et al, 

2001; Calini and Schober, 2002). It is important to note that the nonlinear Schrodinger equation 

has almost the same associated spectral problem (4) as the modified Korteweg-de Vries equation 

(Lamb, 1980; Ablowitz and Clarkson, 1991), 
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and in the case of the initial “pure amplitude” modulated (A = A*) packets the system (12) 

coincides in form with (4). The system (12) can be asymptotically derived directly from the 

AKNS system (4) after the substitution (7) at t = 0 and representing the eigenfunctions of (4) as 

the asymptotic expansion, 
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Substitution into (4) and removal of secular terms at order ε in the equations for ψ(1) easily give 

that λ0= ± ik/2 and that ψ1,2 satisfy (12). Thus, any eigenvalue µ of (12) (real-valued for a 

“pure” amplitude modulation) giving an envelope soliton for the nonlinear Schrodinger equation 

corresponds to a complex eigenvalue asymptotically given by µ ± ik /2 for (4), which 

corresponds to a breather. This agrees with the direct breather reduction from the mKdV 

equation to the NLS equation (Lamb, 1980; Grimshaw et al, 2001).   
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For disturbances that tend to a constant at infinity (that is, they exist on a pedestal), a single 

discrete eigenvalue λ = cos(η + iφ) corresponds to the breather solution of the nonlinear 

Schrodinger equation (see, e.g., Dysthe and Trulsen, 1999) 
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where φ is a free parameter. This breather is localized in space and periodic in time.  The 

important role of the breather solutions in freak wave formation in the framework of the 

nonlinear Schrodinger equation has been pointed out by Dysthe and Trulsen (1999). These 

authors also presented other breather solutions. Physically such solutions demonstrate the 

formation of short-lived energetic wave packets from an almost periodic wavetrain in the 

framework of the mKdV equation. The height of these anomalous waves can exceed the 

unperturbed value of the wavetrain by up to three times. Such waves can appear at any place and 

at any time and, in contrast to solitons and breathers, they exist only for finite periods of time. 

As a result, an initial quasi-uniform wave field will evolve into one with a variable number of 

chaotically appearing and disappearing large-amplitude wave packets. 

 

3. Breather generation from localized wave packets 

First, the dynamics of weakly nonlinear wave packets in the framework of the modified 

Korteweg -de Vries and NLS equations will be considered. The initial wave group is chosen as 
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where the wavenumber and amplitude are varied (k is an integer). Accordingly, the wave 

envelope, A(x) in the nonlinear Schrodinger equation is described by 
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The advantage of the chosen piece-constant envelope is that the AKNS system for the modified 

Korteweg – de Vries equation (4) as well as (12) for the NLS equation can be solved in the finite 

domain 2π, with the boundary conditions (see for instance, Clarke et al (2000)), 

 

ϕ1 and ψ1 = 0 at x = 2π,     and        ϕ2 and ψ2 = 0 at x = 0.                      (17) 

 

The solutions of the both AKNS systems are can then be found explicitly, and the discrete 

spectra determined. 

The first run is done for the slowly modulated wave packets: k = 10 and a = 2. Two discrete 

eigenvalues are obtained for the initial modified Korteweg-de Vries equation 
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and for the nonlinear Schrodinger equation 
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As expected in this weakly nonlinear limit, the imaginary part of the eigenvalues is close to 

Im(λ)=k/2=5, and the real part of the eigenvalues are approximately the same: Re(λ)=µ. 

Therefore, two breathers are generated from the initial wave field in the framework of the 

modified Korteweg-de Vries equation, and they are envelope solitons in the framework of the 

nonlinear Schrodinger equation. It is important to mention that characteristics of the carrier 

wave in both breathers are the same (phase and group velocities), and therefore, their relative 

motion is related with nonlinearity only. 

Also, we carried out direct numerical simulation of the modified Korteweg-de Vries equation as 

well as for the nonlinear Schrodinger equation for the corresponding initial conditions: (15) for 

mKdV and (16) for NLS. Snapshots of the wave field evolution in the framework of the mKdV 

equation (left) and NLS equation (right) are presented in Fig. 1 for the same times. It is clearly 

seen that both models give the same description of the wave packet evolution into two breathers 

and a weak dispersive tail. These snapshots demonstrate the appearance and disappearance of 

the large amplitude short-lived pulses. According to the AKNS scheme the breather amplitude is 
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4µ; see (2). The breather amplitudes are 3.6 and 2.2, but it is difficult to select “pure” breathers 

because they oscillate around the “middle” point. The variation of maximum wave amplitude in 

the process of the breather interaction is large, from 2.5 up to 5.8, more than twice. Large-

amplitude pulses appear for a short time and then disappear. Meanwhile, the maximum wave 

amplitude does not exceed the sum of breather amplitudes.  

The second run is done for strongly modulated wave packets: k = 4 and a = 4. The discrete 

spectrum for the AKNS system for the modified Korteweg-de Vries equation is 
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The same calculation for the nonlinear Schrodinger equation gives 
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The eigenvalues in both models now differ significantly because there is no small parameter 

characterized the weak modulation. The snapshots of the wave field evolution computed directly 

in the framework of mKdV (left) and NLS (right) are presented in Fig. 2. First, the NLS 

equation overestimates the large-amplitude waves (its amplitude reaches 12), while the mKdV 

equation gives the maximum amplitude as 9.3. Moreover, the breathers in the NLS model 

oscillate near the “middle” point, and the large-amplitude pulse will appear and disappear often. 

In the mKdV model all breathers have different carrier wave number (see (20)), and therefore, 

group velocities. For large times breathers completely separate (Fig. 3) and large-amplitude 

pulses appear only at the beginning stage. 

 

4. Numerical simulation of modulated periodic wavetrains 

In this section we present the results of numerical solution of the modified Korteweg-de Vries 

equation (1) with periodic boundary conditions. Although the correspondence between the 

mkdV equation and the NLS equation still holds here for weakly nonlinear waves, the 
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corresponding spectral problems need to be considered with periodic boundary conditions; this 

case is much more complicated and less developed than that for localized solutions, and indeed 

from our perception, not so easily applied, and so we shall not consider that aspect here. To 

analyze the modulational instability of periodic waves we have imposed the initial condition 

corresponding to an amplitude-modulated sinusoidal wave, 

 

( ) )sin()sin(1)0,( kxKxmaxu += .                                              (22) 

 

Since we use periodic boundary conditions at the domain boundaries, the ratio k/K is an integer.  

The first run is carried out for the case when the wave is stable in the weakly nonlinear limit. 

The parameters are: a = 0.04, m = 0.05, k  = 1.884, and K = 0.157. The wave evolution is shown 

on Fig. 4 for three different moments of time. As is predicted by the weakly nonlinear theory, 

the wave envelope demodulates and then almost returns to the initial state.  

The next run is carried out for the conditions corresponding to the modulational instability (10). 

The parameters are: a = 0.08, m = 0.05, k  = 1.884, K = 0.00785. The wave dynamics is 

displayed in Fig. 5 where the intensity corresponds to the value of u(x,t). The weak modulation 

of the wave packet is almost invisible up to time t = 300, and then the wave field becomes non-

uniform due to  modulational instability. Intense wave packets exist for times 300- 900. These 

packets cross the domain several times due to the periodic boundary conditions. The wave field 

varies significantly with time forming separated “spots” shown in large scale in Fig. 6 extracted 

from Fig. 5 for t < 600. Such spots correspond to the appearance and disappearance of wave 

packets (breather-like packets). Between times t = 450 and t = 500 a large-amplitude breather 

has crossed the domain once but disappears after that. Between times t = 600 and t = 750 the 

wave field is not very intense, excluding a small time interval t = 660-670 when a more intense 

breather crosses the domain once and then disappears. The wave intensity grows at t = 750 and 

continues to grow up to t = 900. After that (up to t = 1150) there is a time interval of near 

recurrence of the initial slowly modulated wave. In the vicinity of t = 1200 and t = 1400 intense 

wave packets appeared again. Between t = 1500 and t = 1700 the wave field has almost returned 

to the initial state. The analysis of wave trajectories allows us to select the moments when a  

large-amplitude pulse appears. Snapshots of the wave field are shown in Figure 7. As predicted 

in the framework of the NLS equation, the development of modulational instability leads to the 

appearance of short-lived and almost symmetric wave groups. The simulations demonstrate also 

the recurrence phenomenon known for integrable system (see wave profiles at t =1038 and t = 
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1578). The results of numerical simulations in the framework of the mKdV equation show some 

differences in comparison to the NLS equation. In fact, the wave profile at t = 462 is non-

symmetric (with respect to the large-amplitude pulse), while it would be symmetric in the NLS 

equation if the initial condition is symmetric. The maximum of the wave amplitude (in the 

domain) versus time is shown in Fig. 8. It is necessary to note that the maximum value of the 

wave amplitude (0.31) exceeds the initial wave amplitude (0.08) by 3.8 times, while in the 

framework of the NLS equation the maximum amplitude of a breather does not exceed the 

background amplitude by more than 3 times.  

The next run is carried out for a wave of moderate amplitude, a = 0.16 (other parameters are the 

same: k  = 1.884, m = 0.05, K = 0.00785). Wave trajectories are shown in Fig. 9. Pulses with 

significant amplitude start to appear at t = 100. The life-time of these pulses is short, and it is 

difficult to separate different traces one from another. Pulses are interacting, and the wave 

amplitude varies rapidly. It is worth noting that there is no visible recurrence to the initial state. 

Snapshots of the wave field are presented in Fig. 10. The instability of a wave of moderate 

amplitude leads to the appearance of wave groups with anomalously large amplitudes. These 

wave groups contain different numbers of individual waves. In fact, highly energetic waves are 

always present in the wave field, as can be seen in Fig. 11 where the maximum wave amplitude 

(in the domain) versus time is shown. The maximum wave amplitude varies between 0.26 and 

0.6; hence the maximum amplification is 1.5, which is almost the same as for weakly nonlinear 

waves. Oscillations of the maximum wave amplitude occur more frequently because the 

characteristic time of the modulational instability decreases when the wave amplitude increases. 

The last run is carried out for a wave of large amplitude (a = 0.32), other parameters being the 

same (k  = 1.884, m = 0.05, K = 0.00785). The wave trajectories are shown on Figure 12. There 

is a lot of  spatially narrow wave packets that appear and disappear rapidly, so that their life-

time is short. Waves with very large amplitudes appear randomly as can be seen in Fig. 13 

where the waves with amplitudes exceeding 0.4 are present. The irregular character of the wave 

field is demonstrated by the snapshots displayed in Fig. 14. Sometimes single large-amplitude 

pulses appear instead of wave groups. The maximum of the wave amplitudes in the domain 

varies from 0.6 to 1.1 (Fig. 15), and the maximum amplification is 1.4. The maximum 

amplification decreases when the initial wave amplitude increases. Simultaneously the variation 

of the maximum amplitude decreases. 
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5. Nonlinear Dispersive Focusing 

Briefly, we describe an alternative mechanism for the generation of short-lived large-amplitude 

pulses, in which there is a collision of dispersive, frequency modulated wave trains propagating 

with different group velocities. This mechanism called wave focusing is well known for linear 

wave packets, and also occurs for weakly nonlinear wave packets (Pelinovsky et al, 2000; 

Kharif et al, 2001; Slunyaev et al, 2002). Here the mechanism can be demonstrated by using the 

self-similar solution of the modified Korteweg-de Vries equation 
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where F(z) is the Painleve transcedents satisfying the Painleve-2 equation (Ablowitz and 

Clarkson, 1991) 
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The behavior of the solution given by (24) is similar to the behavior of the Airy-function (note 

that in the linear approximation, when the cubic nonlinear term is omitted,  is an Airy 

function). It is important to note that this self-similar solution describes the evolution of the 

F

δ-

function (which can be considered as a model of an anomalously large wave). Due to invariance 

of the modified Korteweg-de Vries equation in space and time, the solution (24) will remain a 

solution of the mKdV equation if we substitute τ − t  for t. Then, at the initial moment of time, t 

= 0, the solution (24) is a smooth function. As t increases, this solution becomes narrower in 

space, and eventually becomes the δ-function at t = τ. After this it disperses again. This simple 

explicit example shows that short-lived anomalously large waves can appear in a nonlinear wave 

field that has the form of a frequency modulated train. It can be shown from the solution to the 

associated spectral problem (4) that, in contrast to the Korteweg-de Vries equation, the delta-

function potential has no discrete spectrum (Clarke et al, 2000). As a result, this self-similar 

solution does not contain any soliton-like and breather-like pulses, which implies that solitons 

and breathers do not necessarily play a significant role in the dispersive formation of a freak 

wave, if the frequency modulation of the initial wave packet is strong enough. Such frequency 

modulation should be close to the specific form determined by the self-similar solution (23) so 
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that the wave amplification will be significant. Some theorems concerning the formation of the 

singularities from smooth solutions representing frequency modulated wavetrains in the 

framework of the generalized Korteweg–de Vries equation can be found in the work of Bona 

and Saut (1993). In fact, this mechanism of wave focusing from  phase-modulated disturbances 

rapidly vanishing at infinity in the framework of the modified Korteweg-de Vries equation is 

qualitatively the same as for the Korteweg-de Vries equation (Pelinovsky et al., 2000) and will 

not discussed here in further detail. 

 

5. Conclusion 

In this paper we have discussed the generation of large-amplitude short-lived pulses in the 

framework of the modified Korteweg-de Vries equation, that plays an important role in the 

dynamics of meandering barotropic jets, internal waves in stratified fluids, nonlinear Alfvén 

waves propagating along the ambient magnetic field, and nonlinear waves in a distributed 

Schottky barrier diode transmission lines Breather generation from modulated wave packets is 

studied in the framework of the AKNS (Zakharov-Shabat) system for the modified Korteweg – 

de Vries equation as well as in the framework of nonlinear Schrodinger equation 

dasymptotically derived  from the modified Korteweg-de Vries for weakly nonlinear modulated 

wave trains. It is shown that nonlinear Schrodinger equation model overestimates the 

appearance of large-amplitude short-lived pulses, while in the framework of the modified 

Korteweg-de Vries equation breathers fission and then cease to interact. For quasi-periodic wave 

trains modulational instability is studied by means of the direct numerical integration of the 

modified Korteweg-de Vries equation. For weakly nonlinear wave packets, the nonlinear stage 

of the modulational instability is qualitatively the same as that described by the nonlinear 

Schrodinger equation;  large-amplitude wave groups appear quasi-periodically. With an increase 

of the initial amplitude, large-amplitude groups and single pulses appear more frequently and 

rather randomly, while there is no recurrence to the initial state. Maximum amplification of such 

pulses decreases as the initial wave amplitude increases. Also, wave focusing due to difference 

in the group velocities of individual wave packets is noted as another mechanism for the 

appearance of large-amplitude pulses, where we use a self-similar solution of the mKdV 

equation is to demonstrate the effect of wave focusing. In summary, the existence of large-

amplitude short-lived pulses should be considered as an important part of nonlinear wave 

dynamics, together with the usual long-lived solitons and breathers. 
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Figure Captions 

Fig. 1. Wave packet evolution for k = 10 and a = 2 (mKdV – left, NLS – right)  

Fig. 2. Wave packet evolution for k = 4 and a = 4 (mKdV – left, NLS – right) 

Fig. 3. Breather fission on large times (mKdV model) 

Fig. 4. Wave evolution in the non-focusing case  

Fig. 5. Wave trajectories for the initial amplitude a = 0.08 

Fig. 6. The same as in Fig. 2, but for t < 600 

Fig. 7. Snapshots of the wave field with the initial amplitude a = 0.08 

Fig. 8. The maximum value of the wave amplitude in the domain versus time for the initial 

amplitude a = 0.08 

Fig. 9. Wave trajectories for the initial amplitude a = 0.16 

Fig. 10. Snapshots of the wave field with the initial amplitude a = 0.16 

Fig. 11. The maximum value of the wave amplitude in the domain versus time for the initial 

amplitude a=0.16 

Fig. 12. The wave trajectories for the initial amplitude a = 0.32 

Fig. 13. The same as on Figure 12, but for the wave amplitudes exceeding 0.44 

Fig. 14. Snapshots of the wave field with the initial amplitude a = 0.32 

Fig. 15. The maximum wave amplitude in the domain versus time for the initial amplitude a = 

0.32 
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Fig. 1. Wave packet evolution for k = 10 and a = 2 (mKdV – left, NLS – right)  
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Fig. 1. Wave packet evolution for k = 10 and a = 2 (mKdV – left, NLS – right) - continued 
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Fig. 2. Wave packet evolution for k = 4 and a = 4 (mKdV – left, NLS – right)  
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Fig. 2. Wave packet evolution for k = 4 and a = 4 (mKdV – left, NLS – right) - continued 
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Fig. 3. Breather fission on large times (mKdV model) 

 

 

 

 

 

0

x

t = 0

 

0.08

0.04

0

-0.04

-0.08

u

0 100 200 300 400
 x

t = 300

0.08

0.04

0

-0.04

-0.08
0 100 200 300 400

u

 x

t = 600

 

0.08

0.04

0

-0.04

-0.08
0 100 200 300 400

u

 

 

 

 

 

 

 

Fig. 4. Wave evolution in the non-focusing case  
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Fig. 5. Wave trajectories for the initial amplitude a = 0.08 
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Fig. 6. The same as in Fig. 2, but for t < 600 
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Fig. 7. Snapshots of the wave field with the initial amplitude a = 0.08 
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Fig. 8. The maximum value of the wave amplitude in the domain versus time for the initial amplitude a = 

0.08 
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Fig. 9. Wave trajectories for the initial amplitude a = 0.16 
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Fig. 10. Snapshots of the wave field with the initial amplitude a = 0.16 
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Fig. 11. The maximum value of the wave amplitude in the domain versus time for the initial amplitude 

a=0.16 
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Fig. 12. The wave trajectories for the initial amplitude a = 0.32 
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Fig. 13. The same as on Figure 12, but for the wave amplitudes exceeding 0.44 

 

 

 

 

 

 

 

 

 27



0 100 200 300 400

x

t = 0

 

1.2

0.8

0.4

0

-0.4

-0.8

-1.2

u

            
0 100 200 300 400

x

t = 48

 

1.2

0.8

0.4

0

-0.4

-0.8

-1.2

u

 

  
0 100 200 300 400

x

t = 2011.2

0.8

0.4

0

-0.4

-0.8

-1.2

u

       
0 100 200 300 400

x

t = 405

 

1.2

0.8

0.4

0

-0.4

-0.8

-1.2

u

 

  
0 100 200 300 400

x

t = 540

 

1.2

0.8

0.4

0

-0.4

-0.8

-1.2

u

0 100 200 300 400

x

t = 588

 

1.2

0.8

0.4

0

-0.4

-0.8

-1.2

u

   
Fig. 14. Snapshots of the wave field with the initial amplitude a = 0.32 

 28



0 200 400 600
time

 

amax

0.32

0.48

0.64

0.8

0.96

1.12

 
Fig. 15. The maximum wave amplitude in the domain versus time for the initial amplitude a = 0.32 
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Figures 5, 6, 9, 12, 13 as white-black 
 

 
 
Fig.5. 
 
 

 
 
 
 
Fig.6. 

 30



 
Fig.9. 
 
 
 

 
 
Fig. 12. 
 
 

 31



 
Fig.13 
 
 

 32


