Reliable Manipulation of Gas Bubble Size on Superaerophilic Cones in Aqueous Media

Gas bubbles in aqueous media are ubiquitous in a broad range of applications. In most cases, the size of the bubbles must be manipulated precisely. However, it is very difficult to control the size of gas bubbles. The size of gas bubbles is affected by many factors both during and after the generation process. Thus, precise manipulation of gas bubble size still remains a great challenge. The ratchet and conical hairs of the Chinese brush enable it to realize a significant capacity for holding ink and transferring them onto paper continuously and controllably. Inspired by this, a superhydrophobic/superaerophilic cone interface is developed to manipulate gas bubble size in aqueous media. When the resultant force between the Laplace force and the axial component of the buoyancy force approaches zero, the gas bubble is held steadily by the superhydrophobic/superaerophilic copper cones in a unique position (balance position). A new kind of pressure sensor is also designed based on this principle.