Principal Möbius function values for permutations under classic pattern containment

2018-10-05T13:13:21Z (GMT) by David Marchant
These files have the value of the principal Möbius function \mu[1, \pi] for all canonical permutations with length 11 or less.<div><br></div><div>A permutation is canonical if, amongst the symmetries of the permutation, it has smallest lexicographic order.</div><div><br></div><div>Each line contains the permutation, the number of symmetries, and the value of the principal Möbius function, separated by semi-colons. For example,</div><div><br></div><div>{1,3,2} ; 4 ; -1</div><div><br></div><div>tells us that the permutation 132 has four symmetries, and that the value of the principal Möbius function is -1.</div><div><br></div><div><div><div><br></div><div><br></div></div></div><div><br></div>