figshare
Browse
jp2045614_si_003.cif (16.18 kB)

Presence and Absence of Excited State Intramolecular Charge Transfer with the Six Isomers of Dicyano-N,N-dimethylaniline and Dicyano-(N-methyl-N-isopropyl)aniline

Download (16.18 kB)
dataset
posted on 2011-10-13, 00:00 authored by Victor A. Galievsky, Sergey I. Druzhinin, Attila Demeter, Sergey A. Kovalenko, Tamara Senyushkina, Peter Mayer, Klaas A. Zachariasse
The excited state behavior of the six m,n-dicyano-N,N-dimethylanilines (mnDCDMA) and m,n-dicyano-(N-methyl-N-isopropyl)anilines (mnDCMIA) is discussed as a function of solvent polarity and temperature. The dicyano moiety in these electron donor (D)/acceptor (A) molecules has a considerably larger electron affinity than the benzonitrile subgroup in 4-(dimethylamino)benzonitrile (DMABN). Nevertheless, the fluorescence spectra of the mnDCDMAs and mnDCMIAs in n-hexane all consist of a single emission originating from the locally excited (LE) state, indicating that a reaction from LE to an intramolecular charge transfer (ICT) state does not take place. The calculated energies E(ICT), obtained by employing the reduction potential of the dicyanobenzene subgroups and the oxidation potential of the amino substituents trimethylamine (N(Me)3) and isopropyldimethylamine (iPrNMe2), are lower than E(LE). The absence of an LE → ICT reaction therefore makes clear that the D and A units in the dicyanoanilines are not electronically decoupled. In the polar solvent acetonitrile (MeCN), dual (LE + ICT) fluorescence is found with 24DCDMA and 34DCDMA, as well as with 24DCMIA, 25DCMIA, and 34DCMIA. For all other mnDCDMAs and mnDCMIAs, only LE emission is observed in MeCN. The ICT/LE fluorescence quantum yield ratio Φ′(ICT)/Φ(LE) in MeCN at 25 °C is larger for 24DCDMA (1.2) than for 34DCDMA (0.35). The replacement of methyl by isopropyl in the amino substituent leads to a considerable increase of Φ′(ICT)/Φ(LE), 8.8 for 24DCMIA and 1.4 for 34DCMIA, showing that the LE ⇄ ICT equilibrium has shifted further toward ICT. The appearance of an ICT reaction with the 2,4- and 3,4-dicyanoanilines is caused by a relatively small energy gap ΔE(S1,S2) between the two lowest excited singlet states as compared with the other m,n-dicyanoanilines, in accordance with the PICT model. The observation that the ICT reaction is more efficient for 24DCMIA and 34DCMIA than for their mnDCDMA counterparts is mainly caused by the fact that iPrNMe2 is a better electron donor than N(Me)3: E(D/D+) = 0.84 against 1.05 V vs SCE. That ICT also occurs with 25DCMIA, notwithstanding its large ΔE(S1,S2), is due to the substantial amino twist angle θ = 42.6°, which leads to partial electronic decoupling of the D and A subgroups. The dipole moments μe(ICT) range between 18 D for 34DCMIA and 12 D for 25DCMIA, larger than the corresponding μe(LE) of 16 and 11 D. The difference between μe(ICT) and μe(LE) is smaller than with DMABN (17 and 10 D) because of the noncollinear arrangement of the amino and cyano substituents (different dipole moment directions). The dicyanoanilines that do not undergo ICT, have LE dipole moments between 9 and 16 D. From plots of ln(Φ′(ICT)/Φ(LE)) vs 1000/T, the (rather small) ICT reaction enthalpies ΔH could be measured in MeCN: 5.4 kJ/mol (24DCDMA), 4.7 kJ/mol (24DCMIA), and 3.9 kJ/mol (34DCMIA). With the mnDCDMAs and mnDCMIAs only showing LE emission, the fluorescence decays are single exponential, whereas for those undergoing an LE → ICT reaction the LE and ICT picosecond fluorescence decays are double exponential. In MeCN at 25 °C, the decay times τ2 have values between 1.8 ps for 24DCMIA and 4.6 ps for 34DCMIA at 25 °C. Longer times are observed at lower temperatures. Arrhenius plots of the forward and backward ICT rate constants ka and kd of 25DCMIA in tetrahydrofuran, obtained from the LE and ICT fluorescence decays, give the activation energies Ea = 4.5 kJ/mol and Ed = 11.9 kJ/mol, i.e., ΔH = −7.4 kJ/mol. From femtosecond transient absorption spectra of 24DCDMA and 34DCDMA at 22 °C, ICT reaction times τ2 = 1/(ka + kd) of 1.8 and 3.1 ps are determined. By combining these results with the data for the fluorescence decays and Φ′(ICT)/Φ(LE), the values ka = 49 × 1010 s–1 (24DCDMA) and ka = 23 × 1010 s–1 (34DCDMA) are calculated. An LE and ICT excited state absorption is present even at a pump/probe delay time of 100 ps, showing that an LE ⇄ ICT equilibrium is established.

History