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Abstract 

 

Multiple W/O/W emulsions have been prepared by multi-stage (repeated) premix 

membrane emulsification using Shirasu-porous-glass (SPG) membrane with a mean 

pore size of 10.7 µm. A coarse emulsion containing droplets with a mean particle size of 

about 100 µm was homogenized 5-6 times through the same membrane at a constant 

pressure difference of 20-300 kPa to achieve additional droplet homogenization and size 

reduction. The optimum conditions with regard to particle size uniformity were 3 

homogenization cycles at a pressure difference of 100 kPa, under which the mean size 

of outer W/O particles was 9 µm and the span of particle size distribution was as low as 

0.28. The optimum pressure difference in a single-stage process was higher, but the 
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particle size distribution of prepared emulsions was broader than in a multi-stage 

process at smaller pressures. The transmembrane flux was in the range of 1.8-37 

m3/(m2h) and increased with increasing pressure difference and decreasing the content 

of W/O particles. The mean size of W/O particles in each cycle was remarkably 

constant over a wide range of their concentration of 1-60 vol. %.  

 

Keywords: Membrane emulsification; Shirasu porous glass membrane; Multiple 

emulsion; Premix membrane emulsification; Monodisperse emulsion. 

 

1. Introduction 

Membrane emulsification (ME) involves the permeation of pure disperse phase 

through a microporous membrane into stirring or cross-flowing continuous phase (direct 

or conventional ME [1]) or the passage of coarse premix through the membrane (premix 

ME or membrane homogenization [2]). In direct ME, fine droplets are formed in situ at 

the membrane/continuous phase interface. The main disadvantage of direct ME is a 

small disperse phase flux through the membrane of 0.001-0.1 m3/(m2h), that should be 

maintained to precisely control droplet size. In some direct ME investigations [3-4], the 

disperse phase flux was as high as 2.5 m3/(m2h), but the droplet size was only roughly 

controlled. Due to low fluxes, direct ME is mainly used for the preparation of emulsions 

with relatively small disperse phase contents, up to 25 vol. % [4-5]. However, direct ME 

using Shirasu-porous glass (SPG) membranes enables to obtain narrow droplet size 

distributions with the relative span factors of 0.26-0.45 (span = (d90− d10)/d50) [6-10].  

In premix ME, large droplets of coarse premix are disrupted into fine droplets by 

utilizing a microporous membrane as a special kind of low-pressure homogenizing 
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valve. Premix ME holds several advantages over direct ME: (1) The optimal fluxes with 

regard to droplet uniformity are typically above 1 m3/(m2h), which is much higher than 

in direct ME; (2) The mean droplet sizes are smaller than in direct ME, which is often 

advantageous; (3) The experimental set-up is simpler than in direct ME, e.g. no moving 

parts such as cross-flow pump or stirrer are needed, except for the preparation of pre-

emulsion; (4) Premix ME process is easier to control and operate than direct ME. One 

of the disadvantages of single premix ME is a higher emulsion polydispersity compared 

to direct ME [1]. In order to combine high transmembrane flux and narrow droplet size 

distribution, a multi-stage (repeated) premix ME can be applied [11-12]. 

In the first investigation on premix ME carried out by Suzuki et al. [2], premix was 

diluted by permeation into pure continuous phase/diluted emulsion recirculating at the 

low-pressure side of the membrane (Fig. 1a). Using SPG membranes with a mean pore 

size of 2.7 and 4.2 µm, Suzuki et al. [1] have prepared O/W emulsions with the relative 

span factors of 0.40-0.66 at the fluxes of 0.029-3.55 m3/(m2h). In the next studies [13-

14] a batch premix ME system was used, in which fine emulsion was withdrawn from 

the system after passing through the membrane, without any recirculation or dilution 

with the continuous phase (Fig. 1b). If the membrane wall is wetted with the disperse 

phase, the permeation is followed by phase inversion, i.e. a fine W/O emulsion can be 

prepared from an O/W premix (Fig. 1c) and vice versa. Using a batch cell equipped 

with PTFE membranes, Suzuki et al. [13-14] have prepared O/W and W/O emulsions 

with somewhat lower droplet size uniformity than O/W emulsions prepared using cross-

flow premix ME with SPG membranes, but at the fluxes as high as 13 m3/(m2h). The 

cross-flow premix ME exhibits several disadvantages over batch premix ME: (a) fine 

emulsion is diluted by mixing with pure continuous phase, which makes difficult or 
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impossible to reach high disperse phase contents in fine emulsion; (b) the cross-flow 

system is complicated by the presence of pump and additional pipelines and fittings; (c) 

there is a risk of droplet break-up by a cross-flow pump. On the other hand, cross-flow 

premix ME can be operated as a semi-continuous or continuous process, while once-

through premix ME is inevitably a batch process.  

Shima et al. [15] have prepared fine W/O/W emulsions by passing a coarse W/O/W 

emulsion through a disposable membrane cartridge or a membrane holder equipped 

with cellulose acetate membranes. The mean pore size in their investigation was in the 

range of 0.2-3 µm, and the mean droplet size in fine emulsions was 1.0-3.5 times greater 

than the mean pore size.  

The extent of droplet disruption in premix ME is closely related to the wall shear 

stress inside the membrane pores, given by: 

)d/(J8 mep,w εξη=σ                                     (1) 

where ηe is the mean viscosity of emulsion inside the pores, ξ is the mean tortuosity 

factor of the pores, ε is the mean membrane porosity, dm is the mean pore size, and J is 

the transmembrane flux.  

At the transmembrane pressures smaller than a critical pressure pc, the droplets larger 

than the pore size are completely retained by the membrane, i.e. under these conditions 

membrane emulsification is not possible (Fig. 2a). At the transmembrane pressures 

above this critical pressure, all droplets pass through the membrane, irrespective of their 

size. However, at smaller shear stresses inside the pores, the final droplet size, d2, is 

larger than the pore size, dm. In that case the large droplets of the initial diameter d1 are 

deformed at the pore inlets to enter the pores, followed by disruption due to friction 

between the droplets and the pore walls. The fine droplets are deformed again at the 
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pore outlets to regain a spherical shape (Fig. 2b). At higher shear stresses, the droplets 

are more intensively disrupted inside the pores due to collisions between the droplets 

and collisions with the pore walls, so that the final droplet size can be smaller than the 

pore size (Fig. 2c). In that case, the deformation of droplets at the pore outlets does not 

occur, since the final droplet size is smaller than the pore size.  

If the initial droplet size d1 is not much larger than the pore size dm, i.e. for d1/dm 

ratio close to unity, the critical pressure is given by [16]: 
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where a = d1/dm and γO/W is the interfacial tension at oil/water interface. If the initial 

droplet size is much larger than the pore size (d1/dm » 1), the critical pressure is equal to 

the capillary pressure commonly used in direct ME: 

m

W/O
c d

cos4p θγ
=                            (3) 

where θ is the contact angle between disperse phase droplets and membrane surface in 

continuous phase. 

In this investigation, a novel method of multi-stage batch premix ME was used to 

produce multiple W/O/W emulsions suitable for use in drug delivery systems. The fine 

emulsion was repeatedly passed through the same SPG membrane to achieve additional 

droplet homogenization and size reduction. The span of particle size distribution as low 

as 0.28 was obtained at the transmembrane fluxes exceeding 20 m3/(m2h) in some 

experiments. The final mean droplet size was either smaller or larger than the mean pore 

size, depending on the operating conditions. The effect of driving pressure, content of 

apparent oil drops, and number of homogenization cycles on transmembrane flux, mean 

droplet size, and the span of particle size distribution was investigated.  
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2. Experimental 

2.1. Materials   

The oil phase in W1/O/W2 emulsion was 5 wt. % polyglycerol polyricinoleate 

(PGPR) dissolved in soybean oil. PGPR was obtained from Sakamoto Yakuhin Kogyo 

Co. (Japan) and the soybean oil with a saponification value of 188-197, an iodine value 

of 123-142 and a density at 298 K of 920 kg/m3 was purchased from Wako Pure 

Chemical Industries, Ltd. (Japan). The inner aqueous phase W1 contained 5 wt. % D(+)-

glucose as the osmotic additive. The outer aqueous phase W2 contained 0.5 wt. % 

Tween 80 (polyoxyethylene (20) sorbitan monooleate) as emulsifier, 5 wt. % D(+)-

glucose as the osmotic additive, and 1 wt. % sodium alginate. The role of sodium 

alginate was to increase the viscosity of outer aqueous phase W2, thus reducing the 

creaming tendency of large W1/O drops prior to membrane homogenization. The role of 

glucose was to increase the osmotic pressure in both aqueous phases to approximately 

0.78 MPa, which is the osmotic pressure of blood and other body liquids and thus, to 

ensure the stability of prepared multiple emulsions in drug delivery systems. The 

emulsion formulation is given in Tab. 1. Everywhere in this paper, the term oil drops 

will be referred to the drops of oil containing fine W1 droplets.  

 The viscosity of continuous phase measured by a Tokimec model DVL-B digital 

rotational viscometer under the conditions of a No. 5 rotor was 126 and 146 mPa⋅s at 

303 and 297 K, respectively.  

 

2.2. Membranes   
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The experiments have been carried out using SPG membrane tubes (8.5 mm inner 

diameter × 0.8 mm wall thickness) supplied from SPG Technology Co., Ltd (Sadowara, 

Japan). The mean pore size of the membrane was 10.7 µm, the mean porosity was 55.2 

%, and the mean tortuosity factor of the pores 1.3. The membrane was cleaned after use 

by dipping in ethanol and toluene (2 days in ethanol plus 2 days in toluene), followed by 

heating at 500 °C for 30 min in an Advantec model KM-420 electric muffle furnace. 

The inherent properties of the SPG membranes used were completely restored by this 

treatment. 

 

2.3. Experimental set-up and procedure 

W1/O/W2 emulsions were prepared by a two-step emulsification procedure. The 

W1/O emulsion was prepared by means of a homomixer (Ultra Turrax®, model T25, 

IKA Works, USA) at 24,000 rpm for 5 min. The primary W1/O emulsion was then 

mixed with the outer aqueous phase W2 by means of a stirring bar to prepare a W1/O/W2 

premix. The premix was then homogenized by permeation through the SPG membrane 

using a membrane emulsification apparatus manufactured by Kiyomoto Iron Works Ltd. 

(Fig. 3). The advantage of using membrane emulsification at the second step of the 

emulsification procedure is to get high entrapment efficiency of active substance(s) in 

the inner droplets,  owing to a small and controlable shear stress inside the pores.  

The effective membrane length in the module was 12 mm and the effective cross-

sectional membrane area was 3.75 cm2. The pressure vessel was filled with 100 ml of 

the premix and the required transmembrane pressure was built-up with compressed 

nitrogen. The fine emulsion which has passed through the membrane was collected into 

a beaker placed on a Mettler Toledo model PR 5002 precision balance. The balance was 
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interfaced to a PC computer to collect time and mass data every 1 s using a WIN for 

METTLER software. The premixes were emulsified 5-6 times through the same 

membrane without cleaning the membrane between the cycles and the emulsion 

samples obtained after each cycle were collected and analyzed. The experiments have 

been carried out at 297 K.  

Droplet size distribution was determined using a Shimadzu model SALD-2000 laser 

diffraction particle size analyzer, which allows the detection of droplets in the range of 

0.03-280 µm with the resolution of 50 channels. The mean droplet size was expressed 

as the d50 diameter. The photographs of obtained droplets were taken using an Olympus 

PM-CP-3 Polaroid camera attached to an Olympus BH-2 microscope. 

 

3. Results and discussion 

3.1. Effect of transmembrane pressure on emulsification result 

The influence of transmembrane pressure on the transmembrane flux and the mean 

size of oil drops at the content of W1 droplets of ϕi = 0.1 and the content of oil drops in 

the outer aqueous phase of ϕo = 0.1 is shown in Figs. 4 and 5. It is clear that J increased 

with increasing ∆ptm, which led to a more intensive droplet break-up and smaller mean 

particle size at the higher pressures. The same behavior was observed earlier by Suzuki 

et al. [2, 13] in premix ME with SPG and PTFE membranes. It is in contrast to the 

experimental results in direct ME [10, 17], in which mean droplet size at small driving 

pressures (in the so-called size-stable zone) is independent on driving pressure and then 

increases with the further pressure increase (in the size-expanding zone). 

The smaller mean particle sizes at the larger pressures are a consequence of the 

higher shear stresses inside the pores. For an example, substituting ηe = 0.19 Pa s into 
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Eq. (1), one obtains the wall shear stress of 80 and 1740 Pa in a single-stage process 

(n=1) at the pressure of 20 and 150 kPa, respectively. As shown in Fig. 4, the 

transmembrane flux increased linearly with the driving pressure, indicating that the 

fouling resistance was constant for the given operating conditions. It must be noted here 

that the slope of the J vs. ∆ptm line strongly depended on the content of inner droplets in 

oil drops and oil drops in W/O/W emulsion. It is in agreement with the results reported 

by Altenbach-Rehm et al. [12], who found that in premix ME with PTFE membranes 

the permeating flux increased almost linearly with the pressure difference at disperse 

phase (oil) concentrations of 10-30 vol. %. 

The transmembrane flux in Fig. 4 was 0.85-22.7 m3/(m2h), which was at least 3 

orders of magnitude higher than in direct ME with the same membrane. On the other 

hand, the mean size of homogenized droplets was smaller than the mean pore size for all 

operating conditions, except after first pass through the membrane at 20 and 40 kPa 

(Fig. 5). In direct ME with SPG membranes, the mean droplet size is typically 3-4 times 

higher than the mean pore size [15, 10]. The ratio of mean droplet to mean pore size of 

0.73-1.2 observed here after first pass is much smaller than 2-3.7, found by Suzuki et al. 

[13] in premix ME with PTFE membranes, which can be attributed to significantly 

higher mean pore size in this work.  

Transmembrane pressure is used here to overcome flow resistances in the pores and 

interfacial tension forces, i.e. to deform and disrupt large oil drops into smaller droplets: 

∆ptm = ∆pflow + ∆pdisr                                   (4) 

According to the Darcy’s law, the pressure loss for overcoming flow resistances in the 

pores, ∆pflow, should be proportional to the transmembrane flux, while the expenditure 
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of pressure for droplet disruption, ∆pdisr, is proportional to the increase in the interfacial 

area. If transmembrane pressure is kept constant (∆ptm = const), it can be written: 

const)d/1d/1(CJ)RR(p 1iiW/Ooifimetm =−γϕ++η=∆ −                        (5) 

The first and the second term in the right-hand side of Eq. (5) express ∆pflow and ∆pdisr, 

respectively. Here, C is a parameter independent on the number of cycles, Ji and di are 

the transmembrane flux and the resulting mean particle size corresponding to the ith 

cycle, Rm is the hydraulic resistance of clean membrane, and Rfi is the overall fouling 

resistance in the ith cycle. The fouling resistance is a consequence of the accumulation 

of oil drops on the membrane surface (external fouling) and inside the pores (internal  

fouling).  

 

3.2. Effect of number of passes and dispersed phase content on emulsification result 

As shown in Fig. 6, the flux increases with increasing the number of passes, because 

the second term in the right-hand side of Eq. (5) diminishes until it becomes negligible 

for di-1 ≈ di ≈ const. Figs. 9 and 10 indicate that at constant experimental conditions the 

mean particle size tends to a limiting constant value, as the number of cycles increases. 

The largest flux increase was observed in the second pass, as the largest particle size 

reduction occurred in the first pass.  

The variation of ∆pflow and ∆pdisr with the number of emulsification cycles at ∆ptm = 

20 and 150 kPa is shown in Fig. 7. The values of  ∆pflow and ∆pdisr were calculated from 

Eqs. (4) and (5) by adopting the fluxes Ji from Fig. 6 and assuming that the limiting flux 

was established after 5 passes through the membrane. For the operating conditions as in 

Fig. 7, in the first pass about 25 % of the overall pressure drop was used for droplet 

disruption, the remaining being used for overcoming flow resistances in the pores. 
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Because the content of oil drops in Fig. 7 was only 10 vol. %, it should be expected that 

at sufficiantly high dispersed phase contents, the majority of driving pressure in the first 

pass through the membrane is used for overcoming interfacial tension forces. Due to a 

substantial energy dissipation for droplet disruption, the mean droplet size in the first 

pass was reduced 4-9 times. In the subsequent cycles, the mean droplet size continued to 

decrease but at a decreasing rate. Therefore, the pressure drop due to droplet disruption 

progressively decreased, until it became negligible after 5 passes. On the other hand, 

∆pflow increased with increasing the number of cycles and reached the overall pressure 

drop ∆ptm after 5 cycles.  

Fig. 8 shows that the transmembrane flux significantly decreases with increasing the 

content of oil drops, ϕo, which is a consequence of the fact that the disruption term in 

Eq. (5) is directly proportional to the disperse phase content. For dilute emulsions (ϕo = 

1 vol. %), the disruption term can be ignored and the flux is given only by the flow-

resistances term. Under these conditions the maximum flux was observed in the first 

cycle corresponding to a minimum fouling resistance and emulsion viscosity. Over the 

ϕo range of 5-10 vol. %, the maximum flux was observed in the third pass. Presumably, 

for n < 3 the flux was more affected by a decrease in ∆pdisr then by an increase in the 

fouling resistance and consequently, J increased with n. For n > 3, a decrease in the 

disruption term became less significant then an increase in the fouling resistance and J 

decreased with further increase in n. For concentrated emulsions, the maximum flux 

was observed in the final stage (n = 5), which is the same type of behavior as in Fig. 6. 

Fig. 9 demonstrates that at the given operating conditions, the mean droplet size was 

independent on the content of oil drops over a wide range of 1-60 vol. %, in spite of the 

fact that the flux was significantly smaller at the higher contents of oil drops (Fig. 8 and 
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11). It differs from behavior in high-pressure homogenizers, in which the mean droplet 

size at a constant operating pressure may be significantly dependent on the disperse 

phase content, even in the range of 0.05-0.2 vol. % [18]. The behavior shown in Fig. 9 

can be explained by the fact that in the absence of coalescence the mean size of 

homogenized oil droplets is primarily dictated by the mean pore size and the applied 

shear stress inside the pores. Eq. (1) implies that the shear stress inside the pores is 

proportional to the product Jηe. At higher disperse phase content, the flux J is smaller, 

but the emulsion viscosity ηe is higher, so that under certain experimental conditions the 

shear stress inside the pores may become independent on the disperse phase content. In 

premix ME with PTFE membranes, an increase in disperse phase content resulted in an 

increase of mean droplet size [12]. The higher the transmembrane pressure was, the less 

the changes of disperse phase concentration effected the mean droplet size [12].  

Except at the content of oil drops of 60 vol. %, the optimum number of cycles with 

regard to monodispersity was 3-4 (Fig. 9). Altenbach-Rehm et al. [12] found that multi-

stage premix ME with polymeric PTFE membranes also resulted in a smaller mean 

droplet size and narrower droplet size distribution than a single-stage process. The 

optimum number of cycles in their investigation was 2-3, but the minimum relative span 

factor was 0.55-0.7, which is substantially higher than in our study. 

Fig. 10 illustrates the influence of operating pressure on the flux vs. disperse phase 

content curves for n = 1. It can be seen that the effect of operating pressure on the flux 

is more marked at the smaller disperse phase contents. At a content of oil drops of 60 

vol. %, the transmembrane flux was not influenced by the pressure in the investigated 

range of 100-150 kPa. However, at ϕo =1 vol. %, the flux increased by a factor of 2, as 

the pressure increased from 100 to 150 kPa. It can be explained by the fact that in the 
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region of small oil drops contents, the pressure difference is predominantly used for 

overcoming flow resistance forces, while at high disperse phase contents, the pressure 

drop is mainly used for overcoming interfacial tension forces, that are independent on 

the transmembrane flux.  

Fig. 11 shows that the optimum number of cycles with regard to droplet uniformity 

strongly depends on the transmembrane pressure. At the pressure of 100 and 150 kPa, 

the minimum span of particle size distribution of 0.28 and 0.35, respectively was 

reached after three passes. At the same pressures, a single stage process (n = 1) resulted 

in the relative span factors of 0.55 and 0.42, respectively (Figs. 12a and 12b). The 

smallest pressure of 100 kPa was the optimum pressure with regard to droplet size 

uniformity when three emulsification cycles were performed, but the least favorable 

pressure in a single-stage process. It shows that in a single-pass process, the optimum 

pressure is considerably higher than in a multi-pass process. It is also worth of 

mentioning here that at the highest pressure of 300 kPa, the most uniform particles were 

prepared after first pass, but the least uniform after three passes through the membrane 

(Fig. 12c).  

The micrographs of emulsion particles before and after homogenization taken by 

optical microscope under the same magnification are shown in Figs. 13a-13c. As shown 

in Fig. 13a, the particles of coarse emulsion (premix) were relatively large and highly 

polydisperse (some portion of the particles was larger than 300 µm, but 0.7 vol. % were 

smaller than 15 µm). The minimum particle size in the premix was 12 µm, which was 

above the mean pore size. After first pass through the membrane, 96 vol. % of the 

particles were smaller than 15 µm, but the remaining 4 vol. % were still in the range of 

15-37 µm (Fig. 13b). Obviously, the driving pressure of 100 kPa was not large enough 
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to finely break up all particles of coarse emulsion in a single pass. However, when 

homogenization was repeated 6 times, all particles were smaller than 10.4 µm and 

highly uniform, as shown in Fig. 13c. 

 

4. Conclusions 

The experiments reported here have demonstrated that the multi-stage (repeated) 

premix ME using SPG membranes enables to obtain multiple W/O/W emulsions with 

very narrow particle size distribution (span = 0.28) at high production rates. The higher 

the transmembrane pressure, the smaller number of cycles was necessary to reach a 

narrow particle size distribution. However, much better results with regard to particle 

size uniformity were obtained using several passes (usually 2-4) at smaller pressures, 

than a single pass at higher pressures. At the contents of oil drops of 20 vol. % or above, 

the transmembrane flux in the subsequent cycles was progressively higher approaching 

to a maximum limiting  value, as the number of passes increased. It was explained by a 

decreasing proportion of the total pressure difference used for droplet deformation and 

disruption. The mean droplet size in the subsequent passes was smaller and smaller 

tending to a limiting value determined by the magnitude of the shear stress inside the 

membrane pores. The permeation rate through the membrane considerably decreased 

with increasing the content of oil drops, but the mean size of oil drops was unaffected. 

Our further study of multi-stage premix membrane emulsification will be focused on 

the effects of interfacial tension, mean pore size, and the viscosity of continuous phase 

on the emulsification results.   

 

5. List of Symbols 
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a ratio of initial particle size to pore size (d1/dm), - 

C constant in Eq. (5), - 

d1 initial particle size, m 

dm mean pore size of membrane, m 

d50      mean particle size of emulsion, m 

J transmembrane flux, m s-1  

n number of homogenization cycles, - 

pc critical pressure, Pa 

∆ptm transmembrane pressure, Pa 

∆pflow  pressure loss for overcoming flow resistances in the pores, Pa  

q3 volume frequency of particles, m-1 

Rm hydrodynamic resistance of clean membrane, m-1 

Rf fouling resistance, m-1 

span relative span factor of particle size distribution, - 

ε porosity of membrane wall, - 

ηe mean viscosity of emulsion inside pores, Pa s 

ϕi concentration of inner droplets of W1 phase in oil drops, vol. % 

ϕo concentration of oil drops in outer aqueous phase, vol. % 

γO/W  interfacial tension at oil/water interface, N m-1 

θ  contact angle between oil and membrane surface in continuous phase, rad  

σw,p wall shear stress inside pores, Pa 

ξ mean tortuosity factor of pores, - 

 

Subscripts 
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i refers to ith stage of membrane homogenization 

w refers to water 
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TABLES 

 

 

Table 1. The formulation of W1/O/W2 emulsions prepared in this work. 

Inner aqueous phase, W1 5 wt. % glucose dissolved in distilled water 

Oil phase 5 wt. % PGPR dissolved in soybean oil 

Outer aqueous phase, W2 
0.5 wt. % Tween 80, 1 wt. % sodium alginate, 

and 5 wt. % glucose dissolved in distilled water 

Volume percent of inner aqueous 

phase in W1/O emulsion 
ϕi = 10-30 vol. % 

Volume percent of W1/O emulsion 

drops in W1/O/W2 emulsion 
ϕo = 1-60 vol. % 

Mean size of inner aqueous phase 0.37−0.54 µm 

Mean size of homogenized oil droplets 4.4−13.2 µm 
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FIGURE CAPTIONS 

 

Fig. 1.  Premix membrane emulsification (ME) systems. 

 

Fig. 2.  Droplet break-up in premix ME: (a) droplet retention below a critical 

pressure; (b) moderate break up at moderate shear stresses (dm < d2 < d1); 

(c) intensive break up at high shear stresses (d2 < dm < d1).  

      

Fig. 3. Experimental set-up for premix ME used in this study. 

 

Fig. 4.  Effect of transmembrane pressure on transmembrane flux. 

 

Fig. 5.  Effect of transmembrane pressure on the mean size of oil drops. 

 

Fig. 6.  Transmembrane flux as a function of number of emulsification cycles at 

different transmembrane pressures. 

 

Fig. 7.  Variation of the pressure drop terms given in Eq. (4) with number of 

emulsification cycles.  

 

Fig. 8.  Transmembrane flux as a function of number of emulsification cycles at 

different contents of oil drops.  
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Fig. 9.  Variation of mean particle size and the span of particle size distribution 

with number of cycles at different contents of oil drops. 

 

Fig. 10. Effect of the content of oil drops on transmembrane flux at two different 

transmembrane pressures (single pass through the membrane). 

 

Fig. 11.  Variation of mean particle size and the span of particle size distribution as 

a function of number of cycles at different transmembrane pressures. 

 

Fig. 12a. Effect of number of cycles on particle size distribution at ∆ptm = 100 kPa. 

The dashed line represents the mean pore size. 

 

Fig. 12b.  Effect of number of cycles on particle size distribution at ∆ptm = 150 kPa. 

The dashed line represents the mean pore size. 

 

Fig. 12c. Effect of number of cycles on particle size distribution at ∆ptm = 300 kPa. 

The dashed line represents the mean pore size. 

 

Fig. 13a. Photograph of large premix particles before membrane homogenization 

(d50 ≈ 100 µm). 

 

Fig. 13b. Photograph of fine particles obtained after first pass through the membrane 

(d50 = 10.8 µm, span = 0.53, experimental conditions as in Fig. 12a). 
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Fig. 13c. Photograph of fine particles obtained after six passes (d50 = 8.8 µm, span = 

0.30, experimental conditions as in Fig. 12a). 
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Fig. 1, Vladisavljević et al. 
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Fig. 4, Vladisavljević et al. 
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Fig. 5, Vladisavljević et al. 
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Fig. 6, Vladisavljević et al.
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Fig. 7, Vladisavljević et al.
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Fig. 8, Vladisavljević et al. 
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Fig. 9, Vladisavljević et al. 
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Fig. 10, Vladisavljević et al. 
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Fig. 11, Vladisavljević et al. 



-34- 

 

 

 

 

 

1 10 100
0.0

0.1

0.2

0.3 n=1
span=0.55
d50=10.5 µm

 

∆ptm=100 kPa
ϕo = 30 vol.%
ϕi = 30 vol. %

Vo
lu

m
e f

re
qu

en
cy

 o
f W

/O
 p

ar
tic

les
 q

3 /
 µ

m
-1

Diameter of W/O particles d / µm

0.1

0.2

0.3
n=2
span=0.42
d50=9.6 µm

 

 

0.1

0.2

0.3

 

n=3
span=0.28
d50=9.0 µm

  

 

 

Fig. 12a, Vladisavljević et al. 

 



-35- 

 

 

 

 

1 10 100
0.0

0.1

0.2

0.3 n=1
span=0.42
d50=9.7 µm

 

∆ptm=150 kPa
ϕo = 30 vol.%
ϕi = 30 vol. %

Vo
lu

m
e f

re
qu

en
cy

 o
f W

/O
 p

ar
tic

les
 q

3 /
 µ

m
-1

Diameter of W/O particles d / µm

0.1

0.2

0.3
n=2
span=0.45
d50=8.0 µm

 

 

0.1

0.2

0.3

 

n=3
span=0.35
d50=7.2 µm

  

 

 

 

Fig. 12b, Vladisavljević et al. 
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Fig. 12c, Vladisavljević et al. 
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