Post-Translational Modifications to <i>Toxoplasma gondii</i> α- and β-Tubulins Include Novel C-Terminal Methylation

<i>Toxoplasma gondii</i> is an apicomplexan of both medical and veterinary importance which is classified as an NIH Category B priority pathogen. It is best known for its ability to cause congenital infection in immune competent hosts and encephalitis in immune compromised hosts. The highly stable and specialized microtubule-based cytoskeleton participates in the invasion process. The genome encodes three isoforms of both α- and β-tubulin and we show that the tubulin is extensively altered by specific post-translational modifications (PTMs) in this paper. <i>T. gondii</i> tubulin PTMs were analyzed by mass spectrometry and immunolabeling using specific antibodies. The PTMs identified on α-tubulin included acetylation of Lys40, removal of the last C-terminal amino acid residue Tyr453 (detyrosinated tubulin) and truncation of the last five amino acid residues. Polyglutamylation was detected on both α- and β-tubulins. An antibody directed against mammalian α-tubulin lacking the last two C-terminal residues (Δ2-tubulin) labeled the apical region of this parasite. Detyrosinated tubulin was diffusely present in subpellicular microtubules and displayed an apparent accumulation at the basal end. Methylation, a PTM not previously described on tubulin, was also detected. Methylated tubulins were not detected in the host cells, human foreskin fibroblasts, suggesting that this may be a modification specific to the Apicomplexa.