Photocontrol of Clustering, Retaining, and Releasing of Microbeads Concomitant with Phototransformation of Supramolecular Architecture of Amphiphilic Diarylethene

Photoinduced clustering of polystyrene microbeads and photocontrol of their diffusion was achieved in water with the assistance of photoinduced transformation of supramolecular architecture of amphiphilic diarylethene between sphere and fiber states. When a suspension of polystyrene beads containing the sphere state of diarylethene was UV-irradiated from beneath, clustering of the polystyrene beads by thermal convection was observed. The velocity of clustering was dependent on the amount of photogenerated nanofibers that determines the viscosity of the water. Diffusion of the clustered polymer beads was suppressed by the surrounding fibers, but was restored to regular Brownian motion upon irradiation with visible light. It was suggested that the diffusion of the microbeads was controlled by the transformation of aggregates between the more viscous fiber state and the less viscous sphere state. These results provide new insight into the photocontrol of particle motion in fluidic media.