Phospha-Michael Additions to Activated Internal Alkenes: Steric and Electronic Effects

The addition of P­(O)–H bonds to internal alkenes has been accomplished under solvent-free conditions without the addition of a catalyst or radical initiator. Using a prototypical secondary phosphine oxide, a range of substrates including cinnamates, crotonates, coumarins, sulfones, and chalcones were successfully functionalized. Highly activated acceptors such as isopropylidenemalononitrile and ethyl 2-cyano-3-methyl-2-butenoate underwent the phospha-Michael reaction upon simple trituration of the reagents at room temperature, whereas less activated substrates such as ethyl cinnamate and methyl crotonate required heating (>150 °C) in a microwave reactor to achieve significant consumption of the starting alkenes. For the latter alkenes, a competing reaction involving disproportionation of the ditolylphosphine oxide into ditolylphosphinic acid and ditolylphosphine was observed at the high temperatures needed to promote the addition reaction.