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Abstract 

The use of stereolithography (SL) tooling allows plastic parts to be produced by 

injection moulding in a very short time due to the speed of mould production. One of the 

supposed advantages of the process is that it provides a low volume of parts that are the 

same as parts that would be produced by the conventional hard tooling in a fraction of the 

time and cost. 

However, this work demonstrates different rates of polymer shrinkage are 

developed by parts produced by SL and conventional tooling methods. These revelations 

may counter the greatest advantages of the SL injection moulding tooling process as the 

parts do not replicate those that would be produced by conventional hard tooling. 

This work identifies the different shrinkage that occurs in mouldings produced by 

an SL mould as compared to those produced from an aluminium mould. The experiments 

utilise two very different types of polymers and two mould geometries, which are 
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processed in the same manner so that the heat transfer characteristics of the moulds are 

isolated as the only experimental variable.  

The work demonstrates how the two mould materials exhibit very different rates 

of expansion due to the temperature profiles experienced during moulding. This 

expansion must be compensated for to establish the total amount of shrinkage incurred by 

moulded parts. The compensation is derived by a mathematical approach and by 

modelling using finite element analysis. Both techniques depend upon knowledge of the 

thermal conditions during moulding. Knowledge of these thermal conditions are obtained 

by real-time data acquisition and simulated by FEA modeling.  The application of the 

findings provide knowledge of the complete shrinkage values relating to the mould 

material and polymer used which would enable the production of geometrically accurate 

parts. 

 

Keywords: Finite Element Analysis, Plastic injection moulding, Polymer shrinkage, 

Rapid Tooling & Stereolithography. 

 

1. Introduction 

Stereolithography (SL) has shown itself to be capable of directly producing 

tooling cavities (inserts) for injection moulding. The accuracy of the SL process results in 

epoxy inserts that require few further operations prior to their use in injection moulding. 

Thus, the process provides a quick route to tooling that, depending on geometric 

complexity and the moulding polymer, can produce up to approximately 50 parts [1]. 

Various polymers have been successfully moulded by SL injection moulding. These 
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include polyester (PE), polypropylene (PP), polystyrene (PS), polyamide (PA), 

polycarbonate (PC), polyether-ether-ketone (PEEK), acrylonitrile-styrene-acrylate (ASA) 

and acrylonitrile-butadiene-styrene (ABS) [2,3,4,5]. 

SL produces an epoxy mould cavity which possesses very different thermal 

properties in comparison to metal moulds. Without the use of mould heating or cooling 

the different mould materials impose very different rates of part cooling due to the 

inherent heat transfer characteristics of the mould material. Many polymers exhibit 

different shrinkage according to the cooling conditions of the part during moulding 

[6,7,8,9,10,11].  This work intends to establish the effects of the thermal conditions 

caused by the mould material on part shrinkage. 

 

2. Aims  

This research aims to evaluate the shrinkage of mouldings from SL tools in 

comparison with those from a conventional metal rapid tooling method for injection 

moulding.  

 

3. Methodology 

3.1 Experimental design 

The aim of the experiments was to establish the shrinkage that occurs within 48 

hours of the moulding of two polymers of very different characteristics (Polyamide 66 

[PA66, crystalline] and Acrylonitrile-Butadiene-Styrene [ABS, amorphous]) when 

produced by injection moulding in cavities of differing materials (Stereolithography [SL] 
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and Aluminium [AL]). This would be by a direct comparison of the dimensions of the 

moulding cavity and the moulded parts. 

Besides the choice of thermoplastic polymer and tool material the shrinkage of an 

injection moulded part can also be dependent upon several process variables i.e. follow 

up pressure, machine type etc. However, the only variables in the two experimental sets 

(PA66 & ABS) were the tool material type (SL & AL) and tool cavity geometry (bar & 

disc - these were used to identify different shrinkage according to the polymer flow 

direction during moulding and are further explained in section 3.2). With respect to the 

injection moulding to be conducted, the only influential variable in each experimental set 

were the thermal properties of the SL and AL moulding cavities. This dictated the rate at 

which the heat from the injected polymer would be conducted away from the moulded 

part through the cavity material. The value of thermal conductivity of the mould materials 

differ greatly: SL = 0.2 W/m/K, AL = 200 W/m/K. 

 

3.2 Mould design 

The mould design was based upon BS EN ISO 294 - 1 & 4 [12,13] and ASTM 

D955 [14] standards for establishing shrinkage of injection moulded polymers.  

Specimens of two differing geometries were moulded in order to provide 

shrinkage measurements both parallel (bar shape) and perpendicular (disc shape) to the 

direction of polymer flow. Dimensioned images of these mould cavities can be viewed in 

Figure 1. 
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The draft angle used to ease part removal from the mould was 1.5°. This value has 

previously been shown to be an optimum value for reducing potential damage to SL tools 

upon part ejection [15]. 

An open gate design was used on both moulds to avoid areas of heat and pressure 

concentration (such as with fan gating) that can damage an SL tool. This gating system 

was employed to ensure no great pressure differences in the mould that may have led to 

unequal stresses in the part and also prevents an interruption to follow up pressure caused 

by premature freeze-off of the gate. The depth of the gate was the same as the cross-

sectional thickness of the part (3.2mm in both disc & bar). The width of the gate size is 

proportional to the cavity size in each case.  

The moulds did not include a part ejection system. The inclusion of steel ejector 

pins would have provided an area in the moulding cavity which would have cooled the 

polymer at a different rate than other areas in the mould due the different rates of heat 

transfer in the immediate areas. Steel is of a much greater thermal conductivity than SL 

and considerably less than AL. This would not have enabled the experiment to assess the 

complete effects of the heat transfer provided by SL or AL moulds on part shrinkage. The 

absence of an ejector system caused no problems as the moulded parts were very simple 

in shape and were easily removed by hand from the mould. 

The SL moulds were manufactured by a 3D Systems SLA350 machine, using 

Vantico 5190 resin. The build layer thickness was 0.05mm, as this has previously been 

demonstrated as an optimal value in extending the working life of SL moulds [16]. 
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The inserts were contained within a steel bolster for moulding. These bolsters 

facilitated alignment on the machine platen, provided material entry into the mould via a 

tapered sprue bush and protected the inserts from any excessive application of pressure. 

 

3.3 Tool temperature recording 

 In order to establish the heat transfer characteristics that occured in each of 

the moulds, the temperature was recorded throughout the moulding cycle by the insertion 

of k-type thermocouples. The tip of the thermocouples were situated such that they were 

located 0.5mm below the surface of the moulding face. The calibration of each individual 

thermocouple was checked prior to insertion.  After insertion into the mould the 

thermocouples were calibrated to ensure that the temperature 0.5mm below the cavity 

surface was an accurate reflection of the actual cavity surface by comparison of their 

simultaneous values and their response to temperature change. The difference between 

the temperatures measured by the thermocouple and the actual surface temperature was 

never greater than +/- 1oC. A data acquisition program recorded and logged the 

temperature profiles over a 10 minute period during the moulding of a part. 

 

3.4 Injection Moulding 

In order to eliminate extra experimental variables, it was important to find 

universal parameter values that would work with both the polymers, both the mould 

geometries and both mould material types. Other than to compensate for the different part 

volumes of the bar & disc geometries, the parameters were identical in all the 

experiments conducted. 
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The PA66 used was Bergamid A70NAT produced by PolyOne. The ABS used 

was Lustran Ultra 2373 produced by Bayer. Both polymers were hygroscopic and were 

dried immediately prior to processing. 

The injection moulding machine used was a Battenfeld 600/125 CDC model with 

a Unilog 4000 control unit. This machine consisted of a 60 tonne hydraulic clamping unit 

and a 125x35mm reciprocating screw injection unit with a conventional tapered nozzle. 

The following process parameters were used: 

 Melt temperature set at 270oC in each of the five barrel temperature zones. 

 Injection speed set at 100mm/sec. 

 Injection pressure of 150 bar. 

 Follow-up pressure of 150 bar, held for 3 seconds, on a 100mm cushion. 

 The ambient temperature of the mould prior to injection was 23.5oC 

 A cooling time of 40 seconds prior to part removal. This was established as the 

time at which parts could be removed without distortion. 

 A clamping force of 15 tonnes. 

 

3.5 Shrinkage measurement 

 BS EN ISO 291 [17] was used as a standard for the environment in which the 

parts were conditioned and measured 48 hours after moulding. Prior to injection 

moulding, the mould cavity and later the moulded specimens were measured in the 

laboratory atmosphere to the nearest 0.01mm. Twenty parts were moulded from each 

experimental set and measurements made of each. The parts and cavities were measured 

across their gauge length. Since the gate for the bar mould was centrally placed at the top 
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of the gauge length, two measurements were taken either side of the gate for each part 

and the cavity. Gauge length measurement for both part & mould geometries are 

illustrated in Figure 2. The measurements taken from the specimens were compared to 

the measurements of the cavities and expressed as a percentage difference of the 

moulding cavity and the parts in each experimental set after compensation for thermal 

expansion of the mould. 

 

4. Results 

4.1 Mould temperature profiles 

The data showed a strong similarity (no greater than +/- 5% difference) between 

the temperature profiles for both polymer types (ABS & PA66) and both cavity 

geometries (bar & disc). Very different temperature profiles were experienced by the SL 

and AL mould types. The similarity between the readings allowed an average plot to be 

generated that represents the temperature profile for each tool material type (AL & SL) as 

shown in Figure 3. The profiles illustrate the vastly different temperature conditions 

experienced in the SL and AL moulds. The temperature activity in the AL moulds 

occurred in a very short period of time due to the materials high thermal conductivity. 

The temperature profile in the SL mould was more extreme and protracted; without 

external assistance (i.e. cooling by compressed air) the SL mould would take 15 minutes 

to return to its ambient temperature.  
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4.2 Initial shrinkage results 

The initial shrinkage values, calculated from the part/mould measurements, can be 

viewed in Table 1. However, these figures need further consideration to establish the total 

shrinkage that occurs. This is explained in the following section. 

 

4.3 Compensation for thermal expansion – By calculation 

 Both of the mould materials used expand when heated, albeit in differing 

amounts. The measurements taken for shrinkage must be compensated for by the amount 

of cavity expansion to establish the true amount of difference between mould and part 

measurements. Not compensating for thermal expansion could lead to an underestimation 

of shrinkage that occurs during moulding. The value obtained for shrinkage had to be 

corrected by an amount corresponding to the thermal expansion of the mould.  

 The expansion of the mould resulted in an expansion of the cavity, not 

contraction. This was verified by placing the mould inserts in an oven at a nominal 

temperature of 50oC for 10 minutes and then measuring the cavity in the appropriate 

measurement axis (see Figure 2). All moulds showed an increase in cavity size, 

demonstrating an expansion of the cavity. This was authenticated further in later work 

(section 4.4.5). 

This correction factor ∆SM to the part shrinkage due the mould expansion, is given by: 

∆SM  = αm (Tm – Ta)        [13] 

where: 

αm = linear coefficient of expansion of the mould material in 10-6m/m/K 

Tm = maximum mould temperature during injection cycle in °C 
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Ta = ambient temperature of the mould on the machine in °C 

 

The values used were: 

αm :  

• SL = 59 x 10-6m/m/K 

• AL = 23.8 x 10-6m/m/K      [18] 

Ta : 

• SL = 23.5°C 

• AL = 23.5°C 

An explanation of these values is given in section 3.4. 

Tm :  

These values were derived from the thermal history profiles of the moulds and the 

injection parameters. The temperature at the end of the injection cycle was used in the 

calculations as this was the point at which pressure application to the injected polymer 

ceased. When pressure application ended, so did the period at which the shrinkage could 

be influenced. Any further expansion of the mould after this period would be unable to 

affect the part size. The derivation of the values is illustrated in Figure 4. The maximum 

temperature (Tm) at the end of the injection cycle for each mould type were: 

• SL disc = 57.46°C 

• SL bar = 44.37°C 

• AL disc & bar = 30.39°C 
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 The same maximum temperature was experienced by both the aluminium moulds. 

This maximum temperature was reached before the end of the injection cycle. The 

temperature in the stereolithography moulds continued to rise for a long period after 

completion of the injection cycle. Different maximum temperatures were experienced in 

the SL disc & bar moulds due to the different times of the injection cycle required by 

their different part volume. 

 Therefore, the calculation for thermal expansion for each mould type was as 

follows: 

SL disc mould 

 = 59 x 10-6 (57.46 – 23.5) 

 = 2.00364 mm/m 

 = 0.200364 % 

SL bar mould 

 = 59 x 10-6 (44.47 – 23.5) 

 = 1.23133 mm/m 

 = 0.123133 % 

AL disc & bar mould 

 = 23.8 x 10-6 (30.39 – 23.5) 

 = 0.16422 mm/m 

 = 0.016422 % 

The extra amount of shrinkage determined by calculating the expansion of the 

mould was incorporated into the percentage shrinkage of the measured parts to reveal the 

compensated total shrinkage. These values are shown in Table 1. However, these 
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calculations were slightly simplified. An assumption was made that the whole mould was 

at the temperature determined by the data acquisition for tool temperatures and as such  

equal expansion was experienced throughout. In reality the increase in temperature was 

localised around the moulding cavity. Further work was required to prove whether any 

differing expansion of the mould cavity occurred due to the temperature distribution and 

to assess any such effects on the compensation values used. 

 

4.4 Compensation for Thermal Expansion – by Finite Element Analysis 

Finite Element Analysis (FEA) was used to model the mould expansion due to the 

localised heating caused by the hot polymer contained within the cavity. The FEA 

software package used in this work was Algor. Two forms of FEA analysis from Algor 

were used. Firstly, a transient thermal analysis was conducted in order to determine the 

temperature distribution in the mould. Then a linear elastic analysis was performed using 

the temperature distribution results to determine the resulting expansion of the mould 

cavity.  

 

4.4.1 FEA modelling. Stage 1 – Creation of model 

The FEA work began with the creation of the required models and FEA mesh. In 

order to reduce solution time, one quarter of the full mould was created, due to the 

quarterly symmetrical nature of each of the specimen’s gauge length. This is shown in 

Figure 5. 

 The model was extruded such that the mesh spacing between each node was 

0.5mm in the immediate region beneath the moulding cavity (~4mm deep) as these are 
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the elements of interest when evaluating the cavity expansion. This was conducted to 

ensure that a node was at the equivalent point to the thermocouple in the experiments, 

from which the critical time dependant temperatures were derived (see section 3.3). After 

this the mesh spacing for the rest of the model was ~10mm in order to achieve a shorter 

analysis time.  

 

4.4.2 FEA modelling. Stage 2 – Allocation of material properties 

The materials were assumed to be homogeneous and isotropic with constant 

material properties independent of temperature. The values are listed in Table 2. 

 

4.4.3 FEA modelling. Stage 3 – Transient thermal analysis 

 Transient thermal analysis refers to a thermal condition where temperature is a 

function of time. This analysis type was relevant to the conditions that occurred within 

the moulds during the experiments. The heat was supplied by the injected polymer which 

transferred its energy (heat) into the surrounding mould material. This energy was not 

limitless and the polymer corresponded by reducing in temperature as the heat was 

transferred into the lower temperature mould. 

To conduct the transient thermal analysis, certain assumptions were made: 

• The polymer was all initially at 270oC and was in perfect contact with the mould 

at all times. 

• There was no thermal resistance between the plastic and the mould. 

• The mould material was all initially at 23.5oC  
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The critical time dependant temperatures (see Figure 4) at the positions equivalent 

to thermocouple placement in the experiments were plotted from the FEA results and the 

correct step in the solution noted. From this temperature distribution it was possible to 

investigate the reaction of the model (expansion) to a chosen condition (temperature) at a 

pre-identified time step by performing a linear elastic analysis. 

 

4.4.4 FEA modelling. Stage 4 – Linear elastic analysis 

 The models were fully restrained on the planes of symmetry, on the basis of 

which the FEA models were devised (shown in Figure 5) and the parting plane of the 

mould inserts. No further restraints were applied allowing free expansion. The latter point 

may at first seem a little odd as the mould insert was contained in a steel pocket within 

the injection moulding bolster. However it has been already shown that even in optimum 

conditions the maximum possible expansion of the whole insert could be just ~0.25mm in 

any one direction. This amount of expansion could occur freely due to the clearance 

required to enable fitting and removal of the inserts in the bolster pocket. The planes of 

restraint are illustrated in Figure 6. 

 

4.4.5 FEA modelling. Stage 5 – Results 

 After the linear elastic analysis was performed the movements (thermal 

expansion) of the model representing the planes of measurement (see Figure 2) were 

determined by interrogating the displacement vectors of the nodes representing the cavity 

edge. An example of this is illustrated in Figure 7. 
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 From these displacements an average movement (expansion) was determined. In 

each case the results demonstrated an outwards expansion of the cavity. To determine the 

total mould expansion over the measurement axis, the average figure derived from the 

displacement vectors was doubled to include axial expansion in the opposite direction, as 

only half of the measurement axis was modelled. The results of these expansion values 

on total part shrinkage are detailed in Table 1. 

 

Discussion 

 It can be seen from the results (Table 1) that allowing for thermal compensation 

reveals higher values of shrinkage in all polymer/tool combinations, albeit at differing 

scales. Some of the values revealed quite different shrinkage values when the mould 

expansion was incorporated. 

The FEA values gave a good comparison with those derived from the calculations. 

This gave confidence that the method used did give an accurate assessment of the mould 

expansion and the resulting total shrinkage of the parts. It should be noted that the FEA 

method is an approximate solution and relies on the accuracy of the model, mesh density, 

material properties, surface contact resistance and physical restraints. Although many of 

the figures used in the FEA were definitive as they were produced from real practice, 

some were the result of assumptions that had to be made. 

 When compensation for thermal expansion is included, several themes in the part 

shrinkage results from the experimental data were revealed. These include: 
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Shrinkage direction 

The crystalline polymer (PA66) demonstrated slightly greater shrinkage differences (~7% 

more) in the polymer flow direction (bar specimen) as opposed to the direction 

perpendicular to polymer flow (disc specimen). This was also shown with the amorphous 

(ABS) parts but to a lesser degree (~3% more). These characteristics are typical of all 

injection moulded parts, with crystalline parts being more susceptible to anisotropy 

(directional differences) due to the flow direction causing greater alignment of chains 

within the polymer [19]. 

 

Shrinkage according to mould material – PA66 

The results show that the shrinkage that occurred in PA66 parts from the SL moulds of 

both geometries was double that incurred by the comparative parts from the AL moulds. 

An expected shrinkage range for PA66 is 1 – 2.2% [20]. The parts from the AL moulds 

demonstrated shrinkage just above the minimum amount expected, while the parts from 

the SL moulds incurred shrinkage above the maximum in the expected shrinkage range. 

Also the range of part of sizes measured were much greater than those experienced in the 

ABS parts. PA66 part measurements differed in a range of ~0.35mm as compared to 

~0.18mm for the ABS parts. This is a typical characteristic of crystalline polymers which 

are more difficult to hold part tolerances, as compared to amorphous polymers [21]. 
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Shrinkage according to mould material – ABS 

The results show that the shrinkage of the ABS parts is largely unaffected by the mould 

material used. A shrinkage of ~0.76% was incurred by all ABS parts in the experiments. 

An expected shrinkage range for ABS is 0.5 – 0.6% [20]. 

 

Conclusions 

This work has defined that double the amount of shrinkage occurred in PA66 (a 

crystalline polymer) when injection moulded in an SL tool, as compared to an AL tool. In 

the same experimental conditions ABS (an amorphous polymer) demonstrated no such 

differences. 

 The importance of compensating for thermal expansion of the mould in the 

calculation of shrinkage has been demonstrated. This is critical in determining absolute 

shrinkage values in plastic tools, which expand more than metal tools. Neglecting the 

mould expansion in plastic tools would lead to significant error in determining the 

absolute part shrinkage. 

 The establishment of differing part shrinkage in crystalline polymers exposes a 

flaw in the use of shrinkage compensation factors supplied by manufacturers. This work 

has shown that the shrinkage of crystalline polymers is dependant upon process 

conditions which are variable. Supplied shrinkage factors would be specific only to the 

conditions under which the test pieces were produced. Thus, traditional shrinkage factors 

are insufficient not only in the use of SL tools, but also any other techniques where there 

is any significant process variation from the ‘norm’. 
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 It has been shown that the shrinkage of an amorphous polymer was unaffected by 

the cooling conditions which were imposed by mould material type. Consequently, where 

possible, it is recommended that amorphous polymers are used in preference to 

crystalline alternatives when using SL moulds. 
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Figure 6 
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Figure 7 
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 PA66 Part measurement ABS Part measurement 

Mould type AL bar SL bar AL disc SL disc AL bar SL bar AL disc SL disc 

% part/mould  
difference -1.3272 -2.611 -1.2177 -2.4149 -0.7524 -0.6474 -0.7351 -0.5611 

% part/mould 
difference 
including 
compensation 
for thermal 
expansion by 
calculation 

-1.3434 - 2.7308 -1.2339 -2.6101 -0.7687 -0.7696 -0.7514 -0.7599 

% part/mould 
difference 
including 
compensation. 
for thermal 
expansion by 
FEA 

-1.3841 -2.7447 -1.2712 -2.5649 -0.8097 -0.7837 -0.7887 -0.7139 

Table 1  
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Epoxy SI units Reference source 

ρ (density) 1250 kg/m3 [22] 

K (thermal conductivity) 0.19 W/moK [22] 

Cp (specific heat capacity) 1046.7 J/kgoC [22] 

E (modulus of elasticity) 2.6 x 109 N/m2 [22] 

υ (poissons ratio) 0.35 [22] 

α (thermal coefficient of expansion) 59 x 10-6/oC [18] 

Aluminium   

ρ 2720 kg/m3 [23] 

K 170 W/moK [23] 

Cp 880 J/kgoC [23] 

E 68.9 x 109 N/m2 [23] 

υ 0.3 [23] 

α 23 x 10-6/oC [23] 

Polymer   

ρ 1145 kg/m3 [22] 

K 0.2962 W/moK [22] 

Cp 1625.7 J/kgoC [22] 

E 0.26 x 109 N /m2(see note) (see note) 

υ 0.35 [22] 

α 
59 or 23 x 10-6/oC (see 

note) 
[18] or [23] 
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Note - The value of E for the polymer was a nominal low value to reduce restraint. 

The value of α in the polymer was made the same as the mould material to prevent 

interference. The use of such values in both cases was to ensure that the presence of 

the polymer did not influence the expansion of the cavity in the simulation. 

Table 2 
 

Figure 1 - CAD images of the mould cavity designs 
 
Figure 2 - Measurement positions for disc & bar geometries 
 
Figure 3 - Average temperature profiles for AL & SL moulds 
 
Figure 4 - Thermal conditions in the moulds during injection cycle 
 
Figure 5 - FEA model section of bar & disc moulds 
 
Figure 6 - Planes of restraint on bar & disc FEA models 
 
Figure 7 - Interrogation of displacement vectors in FEA results to establish amount of 
expansion – example shows AL bar 
 
Table 1 - The % size difference of part/mould, including compensation for thermal 
expansion by calculation & FEA. 
 
Table 2 - Material values used in FEA for Epoxy, Aluminium & Polymer 
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