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Abstract:   The integration of Unmanned Aerial Vehicles (UAVs) in airspace requires new 

methods to certify collision avoidance systems. This paper presents a safety clearance process 

for obstacle avoidance systems, where worst case analysis is performed using simulation 

based optimization in the presence of all possible parameter variations. The clearance 

criterion for the UAV obstacle avoidance system is defined as the minimum distance from the 

aircraft to the obstacle during the collision avoidance maneuver. Local and global 

optimization based verification processes are developed to automatically search the worst 

combinations of the parameters and the worst-case distance between the UAV and an 

obstacle under all possible variations and uncertainties. Based on a 6 Degree of Freedom 

(6DoF) kinematic and dynamic model of a UAV, the path planning and collision avoidance 

algorithms are developed in 3D space. The artificial potential field method is chosen as a path 

planning and obstacle avoidance candidate technique for verification study as it is a simple 

and widely used method. Different optimization algorithms are applied and compared in 

terms of the reliability and efficiency. 
  

Keywords—  Clearance process, Obstacle avoidance,  Optimization, Potential field 

method, Unmanned Aerial Vehicle. 

 

1. Introduction 

Due to the absence of a pilot, the use of UAVs has become increasingly popular in 

military and civilian applications. Path planning of UAVs with known and unknown 

obstacles is considered as one of the key enabling technologies in unmanned vehicle systems. 

Indeed, a significant amount of research has been devoted to this subject in recent years. In 

addition to offering better performance, the main industrial concern related to new methods is 

to reduce the risk of collision in the presence of all possible parameter variations and various 

failure conditions. Therefore, all proposed collision avoidance algorithms have to be verified 

under all operational conditions and variations that may be experienced during the life of the 

UAVs. The objective of this paper is to develop a process to support safety-critical obstacle 

avoidance systems for UAV operation. The certification process essentially aims at providing 

the evidence in order to certify that the aircraft is safe to fly in the presence of obstacles and 

parameter variations. This task is a very time consuming and expensive process, particularly 

for aircraft [1].  

 

Without a pilot, computer algorithms must be developed to generate a feasible path in real 

time. Depending on the operation scenarios, there are different path planning methods.  An 

UAV has to find a collision-free path between the departure and the destination (or a 

waypoint) configurations in a static and dynamic environment containing various obstacles. 

Several algorithms have been applied to path planning for UAV in the presence of known 
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obstacles. Ray tracing and limit cycle navigation is combined in [2] for UAV operation in 

both 2D and 3D space, while Griffiths et al. present a rapidly exploring random tree (RRT) 

based path planner through 3D environment for an autonomous aerial vehicle [3]. In [4], both 

probabilistic roadmap-based and RRT algorithms are used for generating 3D collision free 

path for an autonomous helicopter. Bortoff develops a collision free path planning method 

using Voronoi graph search method [5], whereas a model predicative control based trajectory 

optimization method is used to avoid obstacles for Nap-of-the-Earth flight in [6]. UAV 

motion planning techniques based on potential field functions have been extensively studied; 

e.g. [7, 8]. UAV path planning using the artificial potential field method will be used as a 

candidate collision avoidance technique in this paper for safety assessment.  

 

Three major concerns in regard to autonomous vehicle operation are efficiency, safety and 

accuracy. As the safety of autonomous vehicles is dependent on control systems and obstacle 

avoidance algorithms, it must be proven that the control systems and obstacle avoidance 

algorithms function correctly in the presence of all possible vehicle and environmental 

variations. Two particular difficulties faced by designers are a mismatching between the 

model used for algorithm development and the real vehicle dynamics, and various 

uncertainties in vehicle operations. To simplify the process of the algorithm development, in 

general a much simplified model that captures the main characters of a vehicle is used in the 

design stage under a number of assumptions or simplifications. This causes the mismatching 

between the model used in the design and real vehicle behavior. Furthermore, the variations 

of the autonomous vehicle dynamics in operation may arise due to the changes of the vehicle 

itself (e.g. the change of mass or the centre of gravity) or the change of the operational 

environment. Assessment of the safety must be performed not only on the nominal model, but 

also for all possible vehicle and environmental variations, and in the presence of the 

mismatching between the model used for the design and the real vehicle. Therefore, 

techniques and procedure are demanded to understand the behavior of UAVs in the presence 

of such uncertainties. They must cover all possible combinations of UAV parameters so that 

to guarantee that the worst-case performance is adequate, which is particularly important for 

safety critical functions such as collision avoidance.  

 

Fault Tree Analysis method was applied to the TCAS (Traffic Alert and Collision Avoidance 

Systems) for UAVs safety analysis in [9], while Failure Modes and Effects Analysis (FMEA) 

was used [10]. In [11], Functional Failure Analysis (FFA) was performed for safety analysis 

of UAV operation including collision avoidance. Two critical hazards in UAV operation 

were defined in this analysis: midair collision and ground impact. Obstacle Analysis was 

applied to rotorcraft UAV in [12], where potential side effects and missing monitoring and 

control requirements were identified by step-by-step use of the obstacle analysis technique. In 

[13], the Markov Decision Process and Observable Markov Decision Process solvers was 

proposed  to generate avoidance strategies  optimizing a cost function that balances flight-

plan deviation with anti-collision. The performance of this collision avoidance system was 

evaluated using a simulation framework developed for TCAS studies. A framework for 

provably safe decentralized trajectory planning of multiple aircraft was presented in [14]. 

Each aircraft plans its trajectory individually using a receding horizon strategy based on 

mixed integer linear programming.  

 

In this study, the minimum distance from the aircraft to an obstacle during a collision 

avoidance maneuver is chosen as the criterion for the performance assessment. To 

successfully perform collision avoidance maneuvers, the minimum distance to the obstacle 

(dmin) must be greater than the radius of the obstacle (rn) including a safe margin. The worst 
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case analysis in the presence of all the possible uncertainties is cast as a problem to find the 

combinations of the variations where the minimum distance to the obstacle (dmin) appears.  

Instead of exhaustive searching the worst cases as in many practices, it is well known that 

optimization can effectively find a (local) minimum or maximum without evaluating all 

possible parameters in a solution space [15].  In this paper, the worst case analysis for 

collision avoidance algorithms is treated as a constrained nonlinear optimization problem 

with simulation being involved in each iteration. In order to pass the safety assessment of an 

anti-collision system, dmin in the worst cases must be greater than rn (dmin> rn) in the presence 

of all possible uncertain parameter variations. Otherwise, the obstacle avoidance algorithm 

and associated controllers have to be redesigned to satisfy the anti-collision specification.  

The proposed approach in this paper is applied to the collision avoidance algorithm using an 

artificial potential field method for a simple UAV model. However, the basic idea is 

applicable for other unmanned vehicles with collision avoidance algorithms developed by 

other methods.  It shall be highlighted that it is not the intention of this paper to refine or 

develop a collision avoidance methods. Instead, it is to develop a new procedure to support 

the safety assessment of an existing collision avoidance algorithm for UAV operating in 3D 

environment.     

The rest of the paper is organized as follows: the simplified kinematic and dynamic model of 

a 6 DOF UAV is introduced in Section 2. The clearance criterion of obstacle avoidance is 

also discussed in this section. Motion planning and collision avoidance algorithms in 3D 

environment are designed in Section 3 using the artificial potential field method. In Section 4, 

the obstacle avoidance algorithm is validated at nominal parameters. In Section 5, initial 

robustness analysis of the collision avoidance algorithm is carried out, where the optimization 

based verification process is introduced and local optimization algorithms are first presented. 

Two stochastic global optimization algorithm based verification processes are developed in 

Section 6. One is genetic algorithms (GA) and the other GLOBAL algorithm. Furthermore, in 

order to guarantee finding the worst-cases, a deterministic global optimization method, i.e. 

Dividing RECTangles (DIRECT), is applied to the worst case analysis of the collision 

avoidance algorithm in Section 7. Simulation results are presented to verify the proposed 

verification processes. Finally, Section 8 concludes the paper and outlines future research 

directions. 

 

2. UAV MODEL AND CLEARANCE CRITERION 

 
A. UAV Model 

 

In order to present a clearance criterion of obstacle avoidance systems, an UAV model is 

considered for the algorithm development and assessment. A six-degree-of-freedom (6DOF) 

rigid-body aircraft model is considered in this study.  The configuration vector s = (x, y, z,  , 
θ, ψ) is used to specify the position and orientation of the UAV in the global coordination, 

where q0= (x, y, z) is the c.g. (center of gravity) position of the vehicle and   = ( , θ, ψ) are 

the Euler angles, with   as the roll, θ as the pitch, and ψ as the yaw.  
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The kinematic model is given by the following two equations [7], [8]: 

 

 
  
  
  

   

                          
                          
           

    

 

 

  

  

  
   

         
      
           

    

 

where velocities are described in a body fixed frame with liner velocity v1= [u  v  w]
T

  and 

angular velocity v2= [p   q   r]
T
. Furthermore, the following notations are used: s.≡ sin (.), c.≡ 

cos (.), t.≡ tan (.). 

The longitudinal and lateral dynamics for a fixed wing aircraft are given by the linear 

equations [18] 

                             

                             

                             

                                        

                           

                           

 

where con = [ e ,  a ,  r , τ]
T 

are control inputs, corresponding to the elevator, aileron, rudder 

deflection angles, and thrust, respectively. The stability and control derivatives used in this 

dynamic model are derived from a nonlinear UAV model using linearization. Therefore, 

these derivatives depend on the physical parameters and aerodynamic coefficients of the 

UAV. Several derivatives are of particular interest in this study and used as uncertainty 

parameters, which are Xu , Xw , Zu , Zw , Xt , Ze , Yv , Ya , Yr being inversely proportional to 

the aircraft mass (m), Xt and Me proportional to aerodynamic coefficients of Ct and Cme 

respectively. 

 

B. Clearance Criterion 

 

An UAV has to find a collision-free path between the starting pointing and the goal (e.g. 

waypoint) in an environment containing various static obstacles. Specifically, spherical 

obstacles are considered in this study but it is applicable to other obstacles. To assess the 

safety of UAVs, the minimum distance to the obstacle (dmin) is defined as the clearance 

criterion in the time domain. In order to maintain safety, as shown in Fig.1, the influence 

range of an obstacle is determined from the radius of the obstacle plus a specified safe 

margin. The specified safe margin can be chosen according to the UAV’s dimensions. As 

mentioned above, the artificial potential field method is used in developing obstacle 

avoidance algorithms in this paper. In this framework, obstacle avoidance maneuver can be 

(1) 

(2) 

(3) 
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performed within the repulsive potential field influence range of an obstacle, where the UAV 

is repulsed from the obstacle and attracted to its goal position.   

 

 

 

 

 

 

 

 

 

Fig.1. Obstacle avoidance clearance criterion 

For a spherical obstacle, the influence range is chosen as the radius of rinfl which is greater 

than the radius of the obstacle (r0) and the safe margin (rsafe). Letting rn = r0 + rsafe, the anti-

collision condition is defined as dmin >rn. In the obstacle avoidance clearance process, all 

violations of these clearance criteria must be found and the worst-case result for each 

criterion computed. The corresponding worst-case combination of uncertainties must also be 

computed.  

 

3. MOTION CONTROL AND OBSTACLE AVOIDANCE 
 

Fig.2 provides an overview of the motion planning and control architecture [16]. The goal of 

motion planning is to generate a desired trajectory so that the UAV can track. Aircraft 

longitudinal and lateral dynamics and kinematic equations are considered for the clearance 

process. The high level mission planer usually supplies waypoint information to the motion 

controller. Then the motion planner retrieves the waypoints and generates a desired 

trajectory. The inner-loop control law is responsible to compute the input signals that drive 

the motors and control surfaces to force the UAV to fly at a desired linear velocity and 

attitude so the collision avoidance path generated by the motion controller can be followed.  
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Fig.2. Motion planning and control structure 
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(7) 

(8) 

(9) 

A. Motion Controller Using Potential Field Method 

 

The potential field method was first used by Khatib for manipulators and mobile robots path 

planning in the 1980s [19]. The basic concept of the potential field method is to fill the 

robot’s workspace with an artificial potential field in which the robot is attracted to its goal 

position and repulsed away from any obstacles. The UAV path planning is, in a sense, similar 

to that of a mobile robot. The combination of the attractive force to the goal and repulsive 

forces away from any obstacles drives the UAV in a safe path to the goal.  
 

Let q0=(x, y, z) denote the current UAV point in airspace. The usual choice for the attractive 

potential is the standard parabolic that grows quadratically with the distance to the goal, such 

that 

         
 

 
        

      

where                    is the Euclidean distance of the UAV’s current position q0  to 

the goal Xgoal  and ka   is a scaling factor [17, 20]. The gradient is calculated as 
 

                       

 

The attractive force considered in the potential field based approach is the negative gradient 

of the attractive potential  
                                  

By setting the vehicle velocity vector proportional to the vector field force, the force Fatt (q0) 

drives the UAV to the goal with a velocity that decreases when the UAV approaches the goal. 
 

The repulsive potential keeps the vehicle away from obstacles. This repulsive potential is 

stronger when the UAV is closer to the obstacles and has a decreasing influence when the 

UAV is far away. A possible repulsive potential generated by obstacle i is 

 

           

 

 
     

  

      
    

 
 

  
 
 

    
                      

                                                             

  

 

where  i is the number of the obstacle close to the UAV, dobsti (q0) is the closest distance to the 

obstacle i, kr is a scaling constant and d0 is the obstacle influence threshold. The negative 

gradient of the repulsive potential, Frepi (q0) = -  Urepi (q0) ,  is given by,  

           
   

 

      
    

 
 

  
 

 

      
     

                     

                                                                       

  

 

where     
           

     
 is a unit vector that indicates the direction of the repulsive force [21].  

Therefore, 
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(6) 
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(10) 

(11) 

(12) 

(13) 

After the desired global velocity is calculated by the potential field method, the 

corresponding desired linear velocity ud and attitude  d = (ϕd , θd , ψd) can also be obtained 
based on UAV’s kinematic model using the following equations: 

 

          
    

 
     

   

 

     

 

                    
     

     

 

                   
 

 

where gain ku  is introduced to allow for additional freedom in weighting the velocity 

commands. The pitch and yaw angle guidance laws are designed so that the vehicle’s 

longitudinal axis steers to align with the gradient of the potential field. The roll angle 

guidance law is designed to maintain the level flight. 

 

B. Inner-Loop Controller 

 

To accomplish the goal of driving the UAV flying at the desired linear velocity ud and desired 

attitude angles  d , the first step is to compute the error between the true linear, the attitude 

angles and the desired ones, respectively. To this effect, let eu = ( ud –u ), ea =( ϕd – ϕ ) , ee 

=( θd – θ ) and er =( ψd – ψ ) denote the linear velocity and attitude angle errors, 

respectively. A simple PID control law is proposed as   

             
 

 
         

  

  
 

Four PID controllers are designed for controlling linear velocity and three attitude angles, 

respectively. As the angular rates p, q and r are available in flight control, the corresponding 

derivative terms in the PID controllers are replaced by their angular rate feedback. 

 

4. COLLISION AVOIDANCE VALIDATION AT NOMINAL  CASE 

 
In this section, the proposed collision avoidance algorithm and controller are validated at the 

nominal parameters. The simulation results for a UAV approaching a spherical obstacle are 

presented at the nominal parameters. The nominal parameter values are m=1.9 kg , Cme =-

1.13, and Ct =12.19. The initial linear and angular velocity vectors are (15, 0, 0) m/s and (0, 

0,0) rad/s for the nominal case. The initial Euler angle is (0, 0, 0.9) rad. Safe margin is 

chosen as 5m. The PID controller gains and motion planner parameters for potential field 

force are also tuned and set to fixed values for the verification process.  

In the simulation, the initial departure point is (0, 0, 20)m, and the spherical obstacle is 

located at (250, 250, -10) m with a radius r0 of 20m. Therefore, the safety radius is 25m 

including safe margin. The simulation result at the nominal parameters is shown in Fig.3. The 

(14) 
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minimum distance to the obstacle is obtained as 29.6166m which is greater than obstacle 

safety radius 25m (dmin>rn). This concludes that the obstacle avoidance algorithm works 

correctly at the nominal parameters. We now verify the proposed obstacle avoidance 

algorithms using the proposed optimization based clearance approach in 3D environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.   Simulation result for UAV collision avoidance at nominal parameters 

 

5. Initial Robustness Analysis and Local Optimization Method 
 

Initial robustness analysis of the proposed algorithm is carried out in this section. 

Uncertainties are considered in the dynamic model (mass and two aerodynamic coefficients), 

and each uncertain parameter is allowed to vary within ± (10 or 20)% of its nominal value. 

These are firstly considered within lower and upper bounds, i.e. m= [1.52, 2.28] kg, Cme = [-

1.243, -1.017]
 
and Ct = [10.971, 13.409]. For the purpose of comparison, the uncertain 

parameters are normalized to have a variation within the range. Fig. 4 shows variations of the 

minimum distance to the obstacle with respect to the normalized uncertain parameters of 

mass, Cme and Ct. There is a significant variation in the distance with the variations of these 
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uncertain parameters. The minimum distance to the obstacle monotonically decreases with 

the increase of the m and Cme , while dmin increases with the increase of Ct.    

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig.4. Mass, Cme and Ct variations 

 

A. Optimization-based Worst-Case Analysis 

 

In this paper, the optimization clearance process is applied to the UAV obstacle avoidance 

systems. If the minimum distance to the obstacle is greater than a safety radius of an obstacle 

(dmin>rn) during the UAV moving, the proposed anti-collision algorithm is safe. When the 

optimization clearance process is applied to the system, this anti-collision condition is 

checked for all possible variations. The local and global optimization methods are applied to 

the problem of finding a worst-case combination of the condition and parameters for the 

UAV collision avoidance systems. Uncertain parameters are considered that lies between 

given upper and lower bounds. It shall be highlighted that the collision avoidance algorithm 

is developed only based on the kinematic model, but it has to be implemented through aircraft 

dynamics as described to drive the aircraft to follow the desired total speed and attitude. 

There is a mismatching in the model structure and complexity. Furthermore, the parameters 

in the inner-loop controllers also have a significant influence in collision avoidance. This 

problem caused by the structural uncertainty is unlikely solved by formal methods. 
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(15) 

Simulation based optimization is proposed in this paper. The objective function is defined as 

 

dmin = min(d(t))   for  t ≤ T (sec) 

s.t PL ≤ P ≤ PU  

 

 

where P is the uncertain parameters set. PL and PU are the lower and upper bounds of P, d(t) 

is the distance to the obstacle, T is the collision avoidance maneuver during the period and 

dmin is the minimum distance to the obstacle.  

 

 

B. Local Optimization-based Worst-Case Analysis 

 

Sequential Quadratic Programming (SQP) method is a standard general purpose algorithm for 

solving smooth and well-scaled nonlinear optimization problems when functions and 

gradients can be evaluated with high precision. It is an iterative method starting from an 

initial point and converging to a local minimum. The function fmincon is a MATLAB 

implementation. The optimization processing of  fmincon consists of three main stages:  

 (i) updating of the Hessian matrix of the Lagrangian function, (ii) quadratic programming 

problem solution, and (iii) line search and merit function calculation. This iteration is 

repeated until an optimal or feasible solution is found [22]. The local optimization method is 

applied with different starting points to the problem of evaluating a clearance criterion for the 

UAV obstacle avoidance systems.   

 

This iteration is repeated until a specified termination criterion (either maximum number of 

function evaluations or convergence accuracy) is met. The results of the minimum distance to 

the obstacle and worst case parameters with different starting points are given in Table.1. The 

results clearly show that fmincon does not give the same solutions for this problem because 

the solution for a local optimization algorithm depends on the starting point. It does not give 

the true worst case. Therefore, global optimization methods are applied to find the true worst-

case.   

 

 

 

TABLE.1. LOCAL OPTIMIZATION RESULTS  

 

 

 

 

Algorithm Starting point Convergent point dmin(m) 

 [m, Cme , Ct ] [m, Cme , Ct ]  

fmincon [1.52, -1.13, 11.8243] [2.28, -1.243, 10.971] 29.0235 

fmincon [1.71, -1.13, 13.409] [2.28, -1.0193, 10.971] 27.4967 
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6. Stochastic Global Optimization-based worst case analysis 
 

A. Genetic Algorithms  

  

Genetic Algorithms (GA’s) are general purpose stochastic search and optimization 

algorithms, based on genetic and evolutionary principles. The theory and practice of the GA 

was originally invented by John Holland in 1960s and was fully elaborated in his book 

Adaption in Natural and Artificial Systems published in 1975 [23]. The basic idea of the 

approach is to start with a set of designs, randomly generated using the allowable values for 

each design variable. Each design is also assigned a fitness value. The process is continued 

until a stopping criterion is satisfied or the number of iterations exceeds as a specified limit. 

Three genetic operators are used to accomplish this task: Selection, Crossover, and Mutation. 

Selection is an operator where an old design is copied into the new population according to 

the design’s fitness. There are many different strategies to implement this selection operator 

including roulette wheel selection, tournament selection and stochastic universal sampling. 

The crossover operator corresponds to allowing selected members of the new population to 

exchange characteristics of their designs among themselves. Crossover entails selection of 

starting and ending positions on a pair of randomly selected strings, and simply exchanging 

the string of 0’s and 1’s between these positions. Mutation is the third step that safeguards the 

process from a complete premature loss of valuable genetic material during selection and 

crossover. The foregoing three steps are repeated for successive generations of the population 

until no further improvement in fitness is attainable [24, 25, 26]. 

GA can be applied to the UAV collision avoidance system to find the global minimum. The 

uncertain parameter set is considered here as the genetic representation, i.e. the chromosome. 

Each of the uncertainties corresponds to one gene. A binary coded string is generated to 

represent the chromosome, where each of the uncertain parameters lies between the lower 

and upper bounds. The selection function of roulette wheel is used for this study. The 

population size and crossover fraction are selected as default value of 20 and 0.8 respectively. 

The optimization is terminated after 51 iterations because the convergence accuracy is met. 

The GA results with different starting points are given in Table.2. Fig.5 shows the number of 

generations versus the best fitness and the mean fitness values at starting points [1.52, -1.13, 

11.82]. 

TABLE.2. GA RESULTS FOR A UAV OBSTACLE AVOIDANCE SYSTEM 

 

 

 

 

 
 

Algorithm Starting point 

[m,  Cme ,  Ct] 

m(kg) Cme Ct dmin(m) Time 

GA [1.52, -1.13, 11.82] 2.2773 -1.0283 10.9734 27.5018 12 sec 

GA 
[1.71, -1.13, 13.409] 2.28 -1.0177 10.9905 27.5032 12 sec 
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Fig.5. No of generations vs. Fitness value 

 

 

B. GLOBAL Algorithm 

 
 

The multistart clustering algorithm presented in this work is based on GLOBAL developed 

by Csendes in 1988, which is a modified version of the stochastic algorithm by Boender et al 

(1982) implemented in FORTRAN. The GLOBAL method has two phases i.e. a global and a 

local one. The global phase consists of sampling and clustering, while the local phase is 

based on local searches. A general clustering method starts with the generation of a uniform 

sample in the search space (the region defined by lower and upper bounds). After 

transforming the sample (by selecting a user set percentage of the sample points with the 

lowest function values), the clustering procedure is applied. Then, the local search is started 

from those points which have not been assigned to a cluster. GLOBAL uses the Single 

Linkage clustering rule [27]. 

The new implementation GLOBALm, which has been written in MATLAB, is freely 

available for academic purposes. It is the bound constrained global optimization problems 

with a black-box type objective function. GLOBALm has different local optimization 

methods which are capable of handling constraints. The UNIRANDI local search method is 

part of GLOBAL package while the BFGS (Broyden-Fletcher-Goldfarb-Shanno) local search 

is part of the MATLAB package. GLOBAL has six parameters to set: the number of sample 

points, the number of best points selected, the stopping criterion parameter for local search, 

the maximum number of function evaluations for local search, the maximum number of local 

minima to explore, and the used local method. All these parameters have a default value [27].  

The GLOBAL optimization with UNIRANDI local search method is applied to find the 

global solution for the UAV obstacle avoidance system. The results with different numbers of 

the sampling points are given in Table.3. GLOBAL algorithm gives the nearly same solutions 
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(16) 

 

(19) 

with different number of sampling points. It takes 1112 functions evaluation with 200 

sampling points while 9810 functions evaluations with 500 sampling points. 36 local 

minimum are found at 500 sampling points while 8 found at 200 sampling points. GA and 

GLOBAL algorithms are performed well for this case study.  However, both these algorithms 

cannot guarantee the worst case is found. 

 

 

 

 

7. Deterministic Global Optimization-based worst case analysis 
 

A. DIRECT Method 

 

The disadvantage of the stochastic global optimization methods including GA and GLOBAL 

algorithms is that there are no formal proofs of convergence. In order to avoid this problem, a 

deterministic global optimization algorithm known as DIRECT method (DIviding 

RECTangles) is also considered in the verification process for the obstacle avoidance. The 

DIRECT algorithm was developed by Jones et al in 1993 [28], which   guarantees to the 

convergence to the globally optimal if the objective function is continuous or at least 

continuous in the neighborhood of the global optimum.  The global convergence may come at 

the expense of a large and exhaustive search over the domain. The DIRECT algorithm was 

created in order to solve difficult global optimization problems with bound constraints and a 

real-valued objective function. The DIRECT method does not require any derivative 

information. It is a modification of the standard Lipschitzian optimization method. This 

global search algorithm can be very useful when the objective function is a “black-box” 

function. The DIRECT algorithm is described below [24, 29, 30] 

Normalization and Division of the Hyper-cube 

DIRECT begins the optimization by transforming the domain of the problem into a unit 

hyper-cube. That is, 

                   

 

The algorithm works in this normalized space. Let c1 be the center point of this hypercube 

and evaluate f(c1). The next step is to divide this hyper-cube by evaluating the function values 

at the points c1±ei, i=1, 2, …N,   where  is one-third of the side length of the hyper-cube, 

No  of SAMPLE m (kg) Cme Ct  dmin(m) Fun.Evalu taken Time  

200 2.2063 -1.0265 11.2221 27.748 1112 13 mins 

500 2.1798 -1.0171 10.971 27.494 9810 2 hours 15 mins 

TABLE.3. GLOBAL RESULTS FOR UAV OBSTACLE AVOIDANCE SYSTEM 
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(17) 

 

(20) 

(18) 

 

(21) 

and ei  is the i th unit vector.  That is, a hyper-cube is divided into three hyper-rectangles in 

each dimension.  

The DIRECT algorithm chooses to leave the best function values in the largest space; 

therefore, we define 

 i = min ( f(c1 + ei) , f(c1 -ei) ),  1 < i < N 

 

and then divide the dimension with the smallest  i into thirds, so that c1±ei, i=1, 2, …N  are 

the centers of the new hyper-rectangles. This pattern is repeated for all dimensions on the 

“centre hyper-rectangle”, choosing the next dimension by determining the next smallest  i.  

 

 

 

 

 

 

 

 

 

Fig.6.   Hyper-rectangles on the piecewise linear curve are potentially optimal [24] 

 

Potentially Optimal Hyper-rectangles 
 

DIRECT then determines which rectangles are potentially optimal, and should be divided in 

this iteration. 

 

Let ϵ > 0 be a positive constant and let fmin be the current best function value. A hyper-

rectangle j is potentially optimal if there exists some K>0 such that 

 

                         and 

 

                       

 

In (18), cj is the center point of the hyper-rectangle j, and dj defines a measure for the hyper-

rectangles. Jones et al. chose to use the distance from center point cj to its vertices as the 

measure and also concluded that a good value for ϵ is       . Fig.6 illustrates this 

definition. 
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(19) 

 

(21) 

 

Division of the Hyper-rectangles  

 

Once a hyper-rectangle has been identified as potentially containing the optimal solution, 

DIRECT divides this hyper-rectangle into smaller hyper-rectangles. DIRECT divides the 

hyper-rectangles by performing division only in the dimensions with the longest side length. 

The sequence of the dimensions to be divided is determined by  j which is defined as 

 

 

                                        

 

where i is one-third the length of the longest side of hyper-rectangle I,  ej is the jth unit 

vector, and I is the set of all dimensions of the longest side length. This process is repeated 

for all dimensions in I. 

 

 

B. Simulation Results  

 

The DIRECT algorithm is applied to the UAV obstacle avoidance verification process, and 

the results are given in Table.4. The DIRECT method requires no initial guesses but operates 

on the parameters upper and lower bounds. The DIRECT algorithm terminates as soon as it 

exceeds the given iterations. The history of iteration versus fitness value is shown in Fig.7. 

All optimization algorithms are performed in MATLAB 2010a and Intel (R) Core(TM) 2 

Duo CPU (3.16GHz). DIRECT takes 3 hours 35 minutes to converge to the global minimum. 

Compared to the stochastic global algorithms, GA and GLOBAL algorithm are performed 

well for this case study, but GA performs faster. However, these are stochastic global 

algorithms and there is no confidence to establish the true worst case. The DIRECT algorithm 

can guarantee finding the worst case in this application, but the computation time is high.   

These worst-case condition and worst-case parameters identified in the verification process 

are further validated with simulation response shown in Fig.8. The time versus distance to the 

obstacle at the nominal and worst-case parameters is shown in Fig.9. The worst-case 

minimum distance to the obstacle dmin is 27.4982m which is greater than the specified safety 

radius of the obstacle. This concludes that the obstacle avoidance algorithm and the controller 

provide adequate performance at the worst-case parameters. Furthermore, in the presence of 

all the described variations, the safety margin for anti-collision is respected.  

TABLE.4. DIRECT RESULTS FOR A UAV OBSTACLE AVOIDANCE SYSTEM 

 

 

 

Algorithm Iteration m (kg)   Cme Ct dmin (m) Fun.Evalu taken Time 

DIRECT 500 2.28 -1.017 10.976 27.498 18505 3 h 35m 
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Fig.7.   DIRECT algorithm- Iteration vs. Fitness value 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8. Simulation response at worst-case parameters 
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Fig.9. Time vs distance to the obstacle at nominal and 

worst case parameters 

  

8. Conclusions 
 

In this paper, optimization based clearance process of obstacle avoidance systems is applied 

to verify collision avoidance algorithms for UAVs. The key idea in this verification approach 

is that it is not necessary for an optimization algorithm to evaluate a cost function over all 

possible solutions in order to find the optimal solution. However different from many 

optimization problems, it is important to find all the possible worst cases in order to verify 

safety critical functionalities like obstacle avoidance. This requires an optimization algorithm 

that converges to the global optimal solution. 

 

In developing optimization based worst case analysis for verification of collision avoidance 

algorithms, the minimum distance to the obstacle during collision avoidance maneuver is 

defined as the cost function. To demonstrate the concept, a 6DOF UAV model is used in the 

case study with a designed collision avoidance algorithm, and mass and two aerodynamic 

coefficients variations are considered for the verification purpose. The local optimization 

method does not give a unique solution as different worst cases are identified when the 

optimization starts from different initial conditions. Therefore, the local optimization is not 

suitable for verification of collision avoidance algorithms for this case study.  

 

To overcome this problem, global optimization algorithms are studied. Stochastic global 

optimization algorithms including GA and GLOBAL methods have been applied to the 

problem. GA and GLOBAL algorithm perform well for this UAV problem. The deterministic 

global optimization of the DIRECT method has also been investigated for the worst-case 
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analysis. Compared with other global optimization algorithms in this study, the DIRECT 

algorithm can guarantee finding the worst case, although it takes more time to converge. It 

shall be highlighted that in developing collision avoidance algorithms using the potential field 

method, the UAV is considered as a mass point and only the kinematic model is used. 

However in real implementation of collision avoidance maneuver, the UAV has to be 

controlled to follow the desirable total velocity and attitude. Therefore, the UAV dynamics 

and the influence of the inner loop controllers for tracking reference speed and attitude 

provided by the collision avoidance algorithm must be taken into account in order to fully 

understand the behavior of the collision avoidance algorithm. This is particularly important 

for very close maneuvers like collision avoidance. The work presented in this paper provides 

a framework of taking into account the different levels of the model complexity used in the 

different stages of autonomous control development. It can significantly improve the 

efficiency of the verification process by automatically searching the worst cases without the 

need to exhaustively evaluate all possible combinations of variations. Further work will be on 

applying the proposed verification approach to an environment with dynamic obstacles for 

UAVs. 
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