figshare
Browse
1/1
5 files

Novel polyubiquitin imaging system, PolyUb-FC, reveals that K33-linked polyubiquitin is recruited by SQSTM1/p62

dataset
posted on 2017-11-22, 14:27 authored by Yoichi Nibe, Shigeru Oshima, Masanori Kobayashi, Chiaki Maeyashiki, Yu Matsuzawa, Kana Otsubo, Hiroki Matsuda, Emi Aonuma, Yasuhiro Nemoto, Takashi Nagaishi, Ryuichi Okamoto, Kiichiro Tsuchiya, Tetsuya Nakamura, Shinichiro Nakada, Mamoru Watanabe

Ubiquitin chains are formed with 8 structurally and functionally distinct polymers. However, the functions of each polyubiquitin remain poorly understood. We developed a polyubiquitin-mediated fluorescence complementation (PolyUb-FC) assay using Kusabira Green (KG) as a split fluorescent protein. The PolyUb-FC assay has the advantage that monoubiquitination is nonfluorescent and chain-specific polyubiquitination can be directly visualized in living cells without using antibodies. We applied the PolyUb-FC assay to examine K33-linked polyubiquitin. We demonstrated that SQSTM1/p62 puncta colocalized with K33-linked polyubiquitin and this interaction was modulated by the ZRANB1/TRABID-K29 and -K33 linkage-specific deubiquitinase (DUB). We further showed that the colocalization of K33-linked polyubiquitin and MAP1LC3/LC3 (microtubule associated protein 1 light chain 3) puncta was impaired by SQSTM1/p62 deficiency. Taken together, these findings provide novel insights into how atypical polyubiquitin is recruited by SQSTM1/p62. Finally, we developed an inducible-PolyUb-FC system for visualizing chain-specific polyubiquitin. The PolyUb-FC will be a useful tool for analyzing the dynamics of atypical polyubiquitin chain generation.

Funding

This work was supported by the Japan Agency for Medical Research and Development [grant number 15AeK0109047h0002]; Japan Society for the Promotion of Science (JSPS) [grant number 16K15423], [grant number 25460946].

History