figshare
Browse
uasa_a_1311261_sm5298.pdf (2.88 MB)

Nonparametric Adjustment for Measurement Error in Time to Event Data: Application to Risk Prediction Models

Download (2.88 MB)
Version 3 2019-09-05, 20:02
Version 2 2018-05-16, 20:53
Version 1 2017-04-13, 20:24
journal contribution
posted on 2017-04-13, 20:24 authored by Danielle Braun, Malka Gorfine, Hormuzd A. Katki, Argyrios Ziogas, Giovanni Parmigiani

Mismeasured time to event data used as a predictor in risk prediction models will lead to inaccurate predictions. This arises in the context of self-reported family history, a time to event predictor often measured with error, used in Mendelian risk prediction models. Using validation data, we propose a method to adjust for this type of error. We estimate the measurement error process using a nonparametric smoothed Kaplan-Meier estimator, and use Monte Carlo integration to implement the adjustment. We apply our method to simulated data in the context of both Mendelian and multivariate survival prediction models. Simulations are evaluated using measures of mean squared error of prediction (MSEP), area under the response operating characteristics curve (ROC-AUC), and the ratio of observed to expected number of events. These results show that our method mitigates the effects of measurement error mainly by improving calibration and total accuracy. We illustrate our method in the context of Mendelian risk prediction models focusing on misreporting of breast cancer, fitting the measurement error model on data from the University of California at Irvine, and applying our method to counselees from the Cancer Genetics Network. We show that our method improves overall calibration, especially in low risk deciles.

History