figshare
Browse
1/1
3 files

New metal complexes with diclofenac containing 2-pyridineethanol or 2-pyridinepropanol: synthesis, structural, spectroscopic, thermal properties, catechol oxidase and carbonic anhydrase activities

Version 2 2016-09-05, 23:21
Version 1 2016-08-26, 14:50
dataset
posted on 2016-09-05, 23:21 authored by Sema Caglar, Esra Dilek, Bulent Caglar, Ekrem Adiguzel, Ersin Temel, Orhan Buyukgungor, Ahmet Tabak

Four new neutral diclofenac-based complexes, [Co(dicl)2(2-pyet)2] 1, [Ni(dicl)2(2-pyet)2] 2, [Cu2(dicl)2(2-pyet)2] 3, and [Cu2(dicl)2(2-pypr)2] 4 have been synthesized and characterized by elemental analysis, FT-IR, thermal analysis. Complexes 1, 3, and 4 have also been characterized by X-ray single-crystal structural analysis. The compounds of Co(II) and Ni(II) have octahedral geometry with two diclofenac and two 2-pyridineethanol ligands in the coordination sphere. The compounds of Cu(II) have square-pyramidal geometry and Cu(II) ions are linked via oxygens to the bridging 2-pyridineethanol or 2-pyridinepropanol ligands. The Δν values acquired by FT-IR are in agreement with the single XRD data. Studies on the thermal properties are reported and the complexes are stable to 196, 216, 215, and 201 °C in air, respectively. Two dinuclear Cu(II) complexes have demonstrated catalytic activity on oxidation of 3,5-di-tert-butylcatechol to 3,5-di-tert-butylquinone showing saturation kinetics at high substrate concentrations. The diclofenac complexes are investigated as inhibitors of the human cytosolic isoforms hCA I and II. The complexes are good as hCA I inhibitors (Kis of 1.52–55.06 μM) but only moderately efficient as hCA II inhibitors (Kis of 0.23–5.61 μM).

History