figshare
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on Carnegie Mellon University and we can't guarantee its availability, quality, security or accept any liability.

Neural imaging to track mental states while using an intelligent tutoring system

journal contribution
posted on 2010-03-01, 00:00 authored by John R. Anderson, Shawn Betts, Jennifer Ferris, Jon FinchamJon Fincham

Hemodynamic measures of brain activity can be used to interpret a student's mental state when they are interacting with an intelligent tutoring system. Functional magnetic resonance imaging (fMRI) data were collected while students worked with a tutoring system that taught an algebra isomorph. A cognitive model predicted the distribution of solution times from measures of problem complexity. Separately, a linear discriminant analysis used fMRI data to predict whether or not students were engaged in problem solving. A hidden Markov algorithm merged these two sources of information to predict the mental states of students during problem-solving episodes. The algorithm was trained on data from 1 day of interaction and tested with data from a later day. In terms of predicting what state a student was in during a 2-s period, the algorithm achieved 87% accuracy on the training data and 83% accuracy on the test data. The results illustrate the importance of integrating the bottom-up information from imaging data with the top-down information from a cognitive model.

History

Date

2010-03-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC