Supporting information for

NeuNAc oxime: A slow-binding and effectively irreversible inhibitor of the sialic acid synthase NeuB

Vladimir Popović, Edward Morrison, Adam Z. Rosanally, Naresh Balachandran, Alexander W. Senson, Robert Szabla, Murray S. Junop and Paul J. Berti*

a Department of Chemistry and Chemical Biology, b Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada, c Department of Biochemistry, Molecular Biology Lab, Western University, London, ON, N6A 5C1, Canada

Table of Contents

Equilibrium tight-binding inhibition equations ... S1
Figure S1. 1H and 13C NMR spectra of NeuNAc oxime ... S3
Figure S2 NeuB steady state kinetic parameters ... S4
Figure S3. Equilibrium model of NeuNAc oxime inhibition ... S5
Table S1. Dynafit models of NeuNAc oxime inhibition ... S6
Table S2. Phosphate-binding interactions ... S7
References .. S7

Equilibrium tight-binding inhibition equations

When the enzyme concentration is a significant fraction of the inhibitor concentration (i.e., when it is no longer true that $[E]_0 \ll [I]_0$), it is necessary to use the Morrison’s quadratic equation for tight-binding inhibitors (1,2):

$$v^2 + N \left[\frac{1}{\Sigma \left(\frac{N_i}{K_i} \right)} + \frac{[I]_0 - [E]_0}{D} \right] v - \frac{N^2 E_i}{D \Sigma \left(\frac{N_i}{K_i} \right)} = 0 \quad (S1)$$

It is possible to introduce cooperative binding by adding the Hill coefficient, n:

$$v^2 + N \left[\frac{1}{\Sigma \left(\frac{N_i}{K_i} \right)^n} + \frac{[I]_0^n - [E]_0^n}{D} \right] v - \frac{N^2 E_i}{D \Sigma \left(\frac{N_i}{K_i} \right)^n} = 0 \quad (S1a)$$

In the absence of cooperativity, $n = 1$. Applying the rapid-equilibrium sequential ordered ternary ternary kinetic mechanism to NeuB (3,4):

$$N = \frac{k_{cat}[Mn][PEP][ManNAc]}{K_{M,Mn}K_{M,PEP}K_{M,ManNAc}}$$
\[N_i = 1 \]

\[D = 1 + \frac{[\text{Mn}]}{K_{M,Mn}} + \frac{[\text{Mn}][\text{PEP}]}{K_{M,Mn}K_{M,\text{PEP}}} + \frac{[\text{Mn}][\text{PEP}][\text{ManNAc}]}{K_{M,Mn}K_{M,\text{PEP}}K_{M,\text{ManNAc}}} \]

The positive solution to the quadratic equation can be used to fit the equation:

\[v = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \quad \text{(S2)} \]

where:

\[a = 1 \]

\[b = N \left[\frac{1}{\Sigma \left(\frac{N_i}{K_i} \right)^{n}} + \frac{[I]_0^n - [E]_0}{D} \right] \]

\[= \left(\frac{k_{\text{cat}}[\text{Mn}][\text{PEP}][\text{ManNAc}]}{K_{\text{Mn}}K_{\text{PEP}}K_{\text{ManNAc}}} \right) \times \left[K_i^n + \frac{[I]_0^n - [E]_0}{1 + \frac{[\text{Mn}]}{K_{\text{Mn}}} + \frac{[\text{Mn}][\text{PEP}]}{K_{\text{Mn}}K_{\text{PEP}}} + \frac{[\text{Mn}][\text{PEP}][\text{ManNAc}]}{K_{\text{Mn}}K_{\text{PEP}}K_{\text{ManNAc}}}} \right] \]

\[c = \frac{N^2E_t}{D\Sigma \left(\frac{N_i}{K_i} \right)} = \frac{\frac{-1}{2}}{\left(1 + \frac{[\text{Mn}]}{K_{\text{Mn}}} + \frac{[\text{Mn}][\text{PEP}]}{K_{\text{Mn}}K_{\text{PEP}}} + \frac{[\text{Mn}][\text{PEP}][\text{ManNAc}]}{K_{\text{Mn}}K_{\text{PEP}}K_{\text{ManNAc}}} \right)} \times \left(\frac{1}{K_i} \right)^n \]
Figure S1. (a) 1H and (b) 13C NMR spectra of NeuNAc oxime.
Figure S2. Initial velocity versus variable substrate concentrations for variable (a) Mn$^{2+}$, (b) PEP, and (c) ManNAc concentrations fitted to eq. S3 for a rapid equilibrium sequential ordered ter ter kinetic mechanism (3). Eq. S3 is the same as eq. 1 of reference 3. Only a subset of data, with the highest fixed substrate concentrations is shown. The inset graphs are Hanes plots ([S]/v₀ vs. [S]).

Equation S3: $v_0 = \frac{k_{cat}[Mn][PEP][ManNAc]}{1 + \frac{K_{M,Mn}}{[Mn]} + \frac{K_{M,PEP}}{[PEP]} + \frac{K_{M,ManNAc}}{[ManNAc]}}$
Figure S3. Equilibrium model of NeuNAc oxime inhibition. (a) The rate of onset of inhibition, k_{on}, was fitted to the second-order integrated rate equation (equation 3), with $k_{on}(\text{apparent}) = 0.038 \pm 0.008 \text{ M}^{-1} \text{s}^{-1}$ and offset(\text{apparent}) = 0.15 ± 0.07. (b) $K(\text{apparent})$ for 20 min preincubation of NeuNAc oxime with NeuB fitted to Morrison's quadratic equation (equation S2). (black line) $K(\text{apparent}) = 6.5 \pm 1.1 \text{ μM}$, with an offset of $\nu(\text{offset}) = 0.40$. (grey line) Fitted with the cooperative model. $K(\text{apparent}) = 16 \pm 7 \text{ μM}$ and a Hill coefficient, $n = 1.4 \pm 0.3$. (c) $K(\text{apparent})$ for 18 h preincubation fitted to Morrison's quadratic equation (equation S2). (black line) $K(\text{apparent}) = 0.9 \pm 0.3 \text{ μM}$, with an offset of $\nu(\text{offset}) = 0.13$. (grey line) Fitted with the cooperative model. $K(\text{apparent}) = 1.4 \pm 0.3 \text{ μM}$ and a Hill coefficient, $n = 1.4 \pm 0.1$. (insets) Same data plotted with [NeuNAc oxime] plotted on a log scale. Relative initial velocities ($\nu = \nu(\text{inhibited})/\nu(\text{control})$) are reported to account for activity loss during extended preincubations. The offset, $\nu(\text{offset})$ is equal to the residual activity at high inhibitor concentrations. The apparent value of $\nu(\text{offset})$ for t = 20 min preincubation is not accurate since binding is not complete after 20 min.
Table S1. Dynafit models of NeuNAc oxime inhibition.
E = NeuB, I = NeuNAc oxime. All concentration units are M and time units are s⁻¹. The NeuB’s kinetic parameters are from Table 1, with the association rate constants (km, kmp, kmpm) set to the approximate diffusion rate limit of 10⁹ M⁻¹ s⁻¹, and the dissociation rate constants (k-m, k-mp, k-mpm) defined give the corresponding K_M values. For example, K_M,Mn = 8.5 × 10⁻⁴ M, therefore k-m = 8.5 × 10⁵ s⁻¹, so that k-m/km = 8.5 × 10⁸ s⁻¹ / 10⁹ M⁻¹ s⁻¹ = 8.5 × 10⁻⁴ M. In this example, k₁ = 10⁶ M⁻¹ s⁻¹, but equivalent values of K_i were obtained by fixing k₁ at 10⁸ to 10⁹ M⁻¹ s⁻¹, and fitting k-1. The cooperativity model is rudimentary, as many possible models of cooperativity could be created, but the current data would not allow discrimination between them. The progress curve in Figure 4 (dashed line) was generated using the same model and kinetic constants, with [I] = 0.

No cooperativity

[mechanism]

\[
\begin{align*}
E + Mn & \leftrightarrow E.Mn : \text{km} \quad \text{k-m} \\
E.Mn + PEP & \leftrightarrow E.Mn.PEP : \text{kmp} \quad \text{k-mp} \\
E.Mn.PEP + ManNAc & \leftrightarrow E.Mn.PEP.ManNAc : \text{kmpm} \quad \text{k-mpm} \\
E.Mn.PEP.ManNAc & \rightarrow E + Mn + NeuNAc : \text{kcat} \\
E + I & \leftrightarrow E.I : \text{k1} \quad \text{k-1} \\
E.I & \rightarrow E*.I : \text{k2}
\end{align*}
\]

[constants]

\[
\begin{align*}
\text{km} & = 1e9 \\
\text{k-m} & = 8.5e5 \\
\text{kmp} & = 1e9 \\
\text{k-mp} & = 4.16e6 \\
\text{kmpm} & = 1e9 \\
\text{kcat} & = 2.8 \\
\text{k1} & = 1e6 \\
\text{k-1} & = 36? \\
\text{k2} & = 5.6e-5?
\end{align*}
\]

[responses]

\[
\begin{align*}
E*.I & = 1 \\
E.I & = 1
\end{align*}
\]

Cooperativity model

[mechanism]

\[
\begin{align*}
E + Mn & \leftrightarrow E.Mn : \text{km} \quad \text{k-m} \\
E.Mn + PEP & \leftrightarrow E.Mn.PEP : \text{kmp} \quad \text{k-mp} \\
E.Mn.PEP + ManNAc & \leftrightarrow E.Mn.PEP.ManNAc : \text{kmpm} \quad \text{k-mpm} \\
E.Mn.PEP.ManNAc & \rightarrow E : \text{kcat} \\
E + I & \leftrightarrow E.I : \text{k1} \quad \text{k-1} \\
E.I + I & \leftrightarrow E.I2 : \text{k1} \quad \text{k-1} \\
E.I2 & \rightarrow E*.I2 : \text{k2}
\end{align*}
\]

[constants]

\[
\begin{align*}
\text{km} & = 1e9 \\
\text{k-m} & = 8.5e5 \\
\text{kmp} & = 1e9 \\
\text{k-mp} & = 4.16e6 \\
\text{kmpm} & = 1e9
\end{align*}
\]

\[k_{\text{mpm}} = 3.52 \times 10^5 \]
\[k_{\text{cat}} = 2.8 \]
\[k_1 = 1 \times 10^6 \]
\[k_{-1} = 28.5? \]
\[k_2 = 8.1 \times 10^{-5}? \]

[responses]
E*.I2 = 1
E.I2 = 1
E.I = 1

Table S2. Phosphate-binding interactions in NeuB and DAHP synthase crystal structures.

<table>
<thead>
<tr>
<th></th>
<th>Enzyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate bridging oxygen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NeuB (^a)</td>
</tr>
<tr>
<td></td>
<td>DAHP synthase (^b)</td>
</tr>
<tr>
<td>K129 N(\zeta)</td>
<td>K186 N(\zeta)</td>
</tr>
<tr>
<td>Phosphate non-bridging oxygens</td>
<td>Neutral hydrogen bonds:</td>
</tr>
<tr>
<td></td>
<td>S132 (O(\gamma) and backbone NH)</td>
</tr>
<tr>
<td></td>
<td>S154</td>
</tr>
<tr>
<td></td>
<td>S213</td>
</tr>
<tr>
<td></td>
<td>Equivalent of ManNAc O1 / NeuNAc O4</td>
</tr>
<tr>
<td></td>
<td>Ion pair:</td>
</tr>
<tr>
<td></td>
<td>Mn(^{2+})</td>
</tr>
<tr>
<td></td>
<td>Ion pairs:</td>
</tr>
<tr>
<td></td>
<td>R234 (bidendate)</td>
</tr>
<tr>
<td></td>
<td>R165 (monodentate + H(_2)O mediated)</td>
</tr>
<tr>
<td></td>
<td>Water mediated:</td>
</tr>
<tr>
<td></td>
<td>HOH19</td>
</tr>
<tr>
<td></td>
<td>HOH51</td>
</tr>
<tr>
<td></td>
<td>HOH98</td>
</tr>
<tr>
<td></td>
<td>HOH759</td>
</tr>
<tr>
<td></td>
<td>Backbone NH:</td>
</tr>
<tr>
<td></td>
<td>A164 NH</td>
</tr>
<tr>
<td></td>
<td>R165 NH</td>
</tr>
</tbody>
</table>

\(^a\) PDBID: 1XUZ (5), 2WQP (6), and 6PPZ (this study).

\(^b\) PDBID: 1N8F (7).

References

