figshare
Browse
2009jolleykphd.pdf (7.24 MB)

Multiscale methods for nanoengineering

Download (7.24 MB)
thesis
posted on 2010-04-21, 09:22 authored by Kenny Jolley
This thesis is presented in two sections. Two different multiscale models are developed in order to increase the computational speed of two well known atomistic algorithms, Molecular Dynamics (MD) and Kinetic Monte Carlo (KMC). In Section I, the MD method is introduced. Following this, a multiscale method of linking an MD simulation of heat conduction to a finite element (FE) simulation is presented. The method is simple to implement into a conventional MD code and is independent of the atomistic model employed. This bridge between the FE and MD simulations works by ensuring that energy is conserved across the FE/MD boundary. The multiscale simulation allows for the investigation of large systems which are beyond the range of MD. The method is tested extensively in the steady state and transient regimes, and is shown to agree with well with large scale MD and FE simulations. Furthermore, the method removes the artificial boundary effects due to the thermostats and hence allows exact temperatures and temperature gradients to be imposed on to an MD simulation. This allows for better study of temperature gradients on crystal defects etc. In Section II, the KMC method is introduced. A continuum model for the KMC method is presented and compared to the standard KMC model of surface diffusion. This method replaces the many discrete back and forth atom jumps performed by a standard KMC algorithm with a single flux that can evolve in time. Elastic strain is then incorporated into both algorithms and used to simulate atom deposition upon a substrate by Molecular Beam Epitaxy. Quantum dot formation due to a mismatch in the lattice spacing between a substrate and a deposited film is readily observed in both models. Furthermore, by depositing alternating layers of substrate and deposit, self-organised quantum dot super-lattices are observed in both models.

History

Supervisor(s)

Gill, S.

Date of award

2009-07-03

Awarding institution

University of Leicester

Qualification level

  • Doctoral

Qualification name

  • PhD

Language

en

Usage metrics

    University of Leicester Theses

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC