Supporting Information

Monitoring Self-Sorting by Electrospray Ionization Mass Spectrometry: Formation Intermediates and Error-Correction during the Self-Assembly of Multiply Threaded Pseudorotaxanes

Wei Jiang, Andreas Schäfer, Parveen Choudhary Mohr, Christoph A. Schalley*

Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin,

Germany

Contents

Formation of 11- 2H · 2PF ₆ as Monitored by ¹ H NMR Spectroscopy (Figure S1)	S 2
Evidence for the preformed pseudorotaxane $15-2H-2PF_6$ (Figures S2 and S3)	S 3
ESI-FTICR mass spectra of a series of equilibrium structures (Figure S4)	S 4
¹ H NMR and ¹ H- ¹ H COSY Spectra of 18b- H•PF ₆ and 20- 2H•2PF ₆ (Figures S5-S7)	S5-S7
¹ H NMR Spectrum of 19- H•PF ₆ (Figure S8)	S 8
¹ H NMR Spectra of the 1:2:1 mixture of 1- H•PF ₆ , 2- H•PF ₆ , and 4 (Figure S9)	S9
¹ H NMR and MS spectra of the 2:1 mixture of 3- 2H · 2PF ₆ and 6 (Figures S10 and S11)	S 10

Figure S1. Changes of ¹H NMR spectra (700 MHz, 298 K, CDCl₃:CD₃CN = 5:1, 1.0 mM) with increasing reaction time after mixing **1**-H·PF₆ and **2**-H·PF₆ with **4** in a 1:1:1 ratio, and ¹H NMR spectra of independently generated **18b**-H·PF₆ and **19**-H·PF₆. Complexed and uncomplexed species are denoted by "c" and "uc" in parentheses, respectively. Fast processes occurring at a timescale less than 4 min are not observable with these NMR experiments. The signals for **18**-H·PF₆ were not identifiable due to significant signal overlapping and broadening and its low concentration. The complexation of **1**-H·PF₆ to the 24-crown-4 unit of **4** has almost finished within 4 min, while most of **2**-H·PF₆ is still free. It is then gradually consumed to afford **11**-2H·2PF₆ over time.

Figure S2. ¹H NMR spectra (500 MHz, 298 K, CDCl₃:CD₃CN = 2:1, 10.0 mM) of (a) C7, (c) **3**-2H·2PF₆, and (b) an equimolar mixture of **3**-2H·2PF₆ and C7. Complexed and uncomplexed species are denoted by "c" and "uc" in the parentheses, respectively. Asterisk = solvent. The NMR results suggest **15**-2H·2PF₆ to be the dominating species in a 1:1 mixture of **3**-2H·2PF₆ and C7 as indicated by the significant complexation-induced shifts of H_c, H_d, and H_e while H_a and H_b remain almost unaffected with respect to the free axle. This should be even more so, when the binding constants increase upon changing the solvent to a less polar one (CH₂Cl₂ : CH₃CN = 8:1, as used in the MS experiments).

Figure S3. ESI-FTICR mass spectrum of 1:1 mixture (295 K, $CH_2Cl_2:CH_3CN = 8:1, 250 \mu M$) of **3-**2H**·**2PF₆ and **C7**. The result supports the conclusion from the NMR experiments.

Figure S4. ESI-FTICR mass spectra (295 K, $CH_2Cl_2:CH_3CN = 8:1$, 250 µM) of (a) 1:1 mixture of **2**-H·PF₆ and **4**, (b) 1:1 mixture of **1**-H·PF₆ and **4**, (c) 2:1 mixture of **2**-H·PF₆ and **4** ([**4**] = 250 µM), and (d) 1:2:1 mixture of **1**-H·PF₆, **2**-H·PF₆, and **4** ([**4**] = 250 µM). These results indicate: (i) **19**-H·PF₆ and **18b**-H·PF₆ are the by far major species in the 1:1 mixtures of **4** with **1**-H·PF₆ and **2**-H·PF₆, respectively; (ii) **20**-2H·2PF₆ is dominant in the 2:1 mixture of **2**-H·PF₆ and **4**, and **18**-H·PF₆ may exist as minor species even when considering the fragmentation of [**20**-2H]²⁺ into [**2**-H]⁺ and [**18**-H]⁺ during ionization process since the intensity of [**18**-H]⁺ is much higher than that of [**2**-H]⁺; (iii) self-sorted pseudorotaxane **11**-2H·2PF₆ is thermodynamically favored over mismatched structure **20**-2H·2PF₆ in a 1:2:1 mixture of **1**-H·PF₆, **2**-H·PF₆, and **4**.

Figure S5. ¹H NMR spectra (500 MHz, 298 K, CDCl₃:CD₃CN = 2:1, 10.0 mM) of (a) **2-H·PF**₆, (d) **4**, (b) 1:1 mixture of **2-H·PF**₆ and **4**, and (c) 2:1 mixture of **2-H·PF**₆ and **4**. The "uc" in the parentheses denotes the signal from uncomplexed species. Asterisk = solvent. The similar shifting of H_c, H_d, H_e, and H_f as observed for [**2-H@C7**]·PF₆ (Figure 1) and the absence of free H_d in (b) indicate that **18b-H·PF**₆ is dominant in this solution. The assignment of **20-**2H·2PF₆ in the 2:1 mixture of **2-**H·PF₆ and **4** is inconclusive due to serious signal overlapping and broadening. But considering the MS result in Figure S4, **20-**2H·2PF₆ is believed to be the major species as indirectly suggested by the low peak intensity of free H_d in Figure S5d.

Figure S6. ¹H-¹H COSY NMR spectrum (500 MHz, 298 K, CDCl₃:CD₃CN = 2:1, 10.0 mM) of 1:1 mixture of **2-H·PF**₆ and **4**. The COSY spectrum supports the assignments for the peaks in Figure S5b.

Figure S7. ¹H-¹H COSY NMR spectrum (500 MHz, 298 K, CDCl₃:CD₃CN = 2:1, 10.0 mM) of 2:1 mixture of **2**-H·PF₆ and **4**. Due to significant signal overlapping and broadening, the COSY spectrum still could not contribute to the identification of **20**-2H·2PF₆ in the 2:1 mixture of **2**-H·PF₆ and **4**.

Figure S8. ¹H NMR spectra (500 MHz, 298 K, CDCl₃:CD₃CN = 2:1, 10.0 mM) of (a) **4**, (c) **1**-H·PF₆, and (b) 1:1 mixture of **1**-H·PF₆ and **4**. The "c" in the parentheses denotes the signal from complexed species. Asterisk = solvent. The obvious complexation-induced shift of H₁, H_a, and H_b indicate **19**-H·PF₆ to be the predominant complex in this solution, which is in line with the MS results.

Figure S9. ¹H NMR spectra (500 MHz, 298 K, CDCl₃:CD₃CN = 2:1, 10.0 mM) of (a) 1:1:1 mixture of **1**-H·PF₆, **2**-H·PF₆, and **4**, (b) 1:2:1 mixture of **1**-H·PF₆, **2**-H·PF₆, and **4**, and (c) 2:1 mixture of **2**-H·PF₆ and **4**. Complexed and uncomplexed species are denoted by "c" and "uc" in the parentheses, respectively. Asterisk = solvent impurity. The significant signal overlapping and broadening hamper the unambiguous assignment of all species in 1:2:1 mixture of **1**-H·PF₆, **2**-H·PF₆, and **4**. But with the previous knowledge about the related systems in mind, complexed H_a and H_b and uncomplexed H_d and their peak integrations suggest **11**-2H·2PF₆ to be the primary species. With respect to **20**-2H·2PF₆, the NMR result is inconclusive but MS results indicate that it coexist with **11**-2H·2PF₆ in this solution as a minor species (Figure S4d).

Figure S10. ¹H NMR spectra (500 MHz, 298 K, $CDCl_3:CD_3CN = 5:1$, 2.0 mM) of (a) **3-**2H**·**2PF₆, (c) **6**, and (b) 2:1 mixture of **3-**2H**·**2PF₆ and **6**. The "uc" in the parentheses denotes the signal from uncomplexed species. The NMR results suggest **25-**4H**·**4PF₆ is dominant in this solution since most of H_a on **3-**2H**·**2PF₆ experience complexation-induced shift after mixing with **6** in 2:1 ratio.

Figure S11. ESI-FTICR mass spectrum of 2:1 mixture of **3**-2H·2PF₆ and **6** (295 K, CH₂Cl₂:CH₃CN = 8:1, 250 μ M) under identical ionization condition as used for the kinetics study of **13**-4H·4PF₆. The mass spectrum shows a low intensity of **25**-4H·4PF₆ with a charge distribution from dication to tetracation. Some fragments (*m*/*z* 413, 559, and 872) are also observed. This is presumably derived from the instability (or metastability) of multiply charged ions of **25**-4H·4PF₆ in the gas phase, which fragment quickly after their generation in the ion source.