Molecular Level Understanding of Adhesion Mechanisms at the Epoxy/Polymer Interfaces

2012-07-25T00:00:00Z (GMT) by Chi Zhang Jeanne Hankett Zhan Chen
It is important to understand the buried interfacial structures containing epoxy underfills as such structures determine the interfacial adhesion properties. Weak adhesion or delamination at such interfaces leads to failure of microelectronic devices. Sum frequency generation (SFG) vibrational spectroscopy was used to examine buried interfaces at polymer/model epoxy and polymer/commercial epoxy resins (used as underfills in flip chip devices) at the molecular level. We investigated a model epoxy: bisphenol A digylcidyl ether (BADGE) at the interfaces of poly (ethylene terephthalate) (PET) before and after curing. Furthermore, small amounts of different silanes including (3-glycidoxypropyl) trimethoxysilane (γ-GPS), (3-Aminopropyl)­trimethoxysilane (ATMS), Octadecyltrimethoxysilane (OTMS­(18C)), and Octyltrimethoxysilane (OTMS­(8C)) were mixed with BADGE. Silane influences on the polymer/epoxy interfacial structures were studied. SFG was also used to study molecular interfacial structures between polymers and two commercial epoxy resins. The interfacial structures probed by SFG were correlated to the adhesion strengths measured for corresponding interfaces. The results indicated that a small amount of silane molecules added to epoxy could substantially change the polymer/epoxy interfacial structure, greatly affecting the adhesion strength at the interface. It was found that ordered methyl groups at the interface lead to weak adhesion, and disordered interfaces lead to strong adhesion.