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Abstract

Implementation of Model Predictive Control (MPC) for nonlinear systems re-

quires on-line solution of a non-convex, constrained nonlinear optimisation prob-

lem. Computational delay and loss of optimality arise in the optimisation proce-

dures. This paper presents a practical MPC scheme for nonlinear systems with

guaranteed asymptotic stability. It is shown that when an initial control profile is

chosen to satisfy an inequality condition in each on-line optimisation procedure,

the nonlinear system under the proposed nonlinear MPC is asymptotically stable.

The stability condition presented in this paper enables the “fictitious” terminal

control to be nonlinear, rather than only linear, and thus the stability region is

greatly enlarged. Furthermore it is pointed out that nominal stability is still guar-

anteed even though the global, or even the local, minimisation of the objective

cost is not achieved within the prescribed computational time.

Keywords: Nonlinear systems, generalised predictive control, computational

delay, optimisation, stability, constrained control

online optimisation problem:

min
U(t)

1
2

∫ T

0
x(t, τ)T Qx(t + τ) + u(t, τ)T Ru(t, τ)dt + x(t, T )T Px(t, T ) (1)

subject to system dynamics,

ΓU(t) ≥ γ (2)

and

2(Ax(t, τ) + Bu(t, τ))T Px(t, τ) + x(t, τ)T Qx(t, τ) + u(t, τ)T Ru(t, τ) ≤ 0 (3)

for τ ∈ [0, δ] where δ denotes the sampling time interval, R > 0, Q > 0 or Q ≥ 0

and non-zero x is detectable in the performance index and P > 0

Fact 1: The constraint (3) is convex if the matrix P satisfies (4).

xU (τ)T (AT +PA+Q)xU (τ)+U∗(τ)T BT PxU (τ)+xU (τ)T PBU∗(τ)+U∗(τ)T RU∗(τ) ≥ 0

(4)



Submitted to IEE Part D: Control Theory and Applications 3

The constraint (3) can be written as

[
x(t, τ)T u(t, τ)T

]



AT P + PA + Q PB

BT P R







x(t, τ)

u(t, τ)


 ≤ 0 (5)

Since the state and the control can be expressed as

x(t, τ) = xx(τ)x(t) + xU (τ)U(t) (6)

and

u(t, τ) = U∗(τ)U(t), (7)

respectively, where xx(τ), xU (τ) are defined in (??) and (??), it follows that




x(t, τ)

u(t, τ)


 =




xx(τ) xU (τ)

0 U∗(τ)







x(t)

U(t)


 (8)

Substituting (8) into (5) gives

[
x(t)T U(t)T

]



xx(τ) xU (τ)

0 U∗(τ)




T 


AT P + PA + Q PB

BT P R







xx(τ) xU (τ)

0 U∗(τ)







x(t)

U(t)


 ≤ 0

(9)

The above constraint is convex in terms of the variable U(t) if

[
xU (τ)T U∗(τ)T

]



AT P + PA + Q PB

BT P R







xU (τ)

U∗(τ)


 ≥ 0, (10)

which is equivalent to condition (4).

Therefore it can be shown that the constraint (9), i.e. (3), is convex in terms

of the variables U(t) if condition (4) is satisfied.

Remark: In the online optimisation the constraint (3) is replaced by (9) where

all the matrices can be calculated off-line. Since the original optimisation problem

in PPP is a QP, together with the convex constraint (9), the new reformed opti-

misation problem in the PPP algorithm is convex and the global minimum can be

found.
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1 Introduction

Model Predictive Control (MPC) is now a recognised method in control engi-

neering (Clarke, 1994), and much effort has been made to extend MPC from

linear systems to nonlinear systems; for example, see Allgöwer and Zheng (1998).

There are, however, two main obstacles to the extension of MPC from linear sys-

tems to nonlinear systems (Biegler and Rawlings, 1991; Mayne, 1996; Chen and

Allgöwer, 1998; Qin and Badgwell, 1998). One obstacle is stability, the other is

the on-line computational burden.

Stability is one of the main problems in MPC since early MPC for linear sys-

tems was criticised for its loss of stability (Bitmead et al., 1990). This problem

has now been solved for linear systems in several ways: infinite horizon predic-

tive control (Rossiter et al., 1996), terminal constraints (Mosca and Zhang, 1992;

Demircioglu and Clarke, 1992) and Fake Algebraic Riccati Equation (Bitmead et

al., 1990). For nonlinear MPC , the first interesting stability result was given by

Mayne and Michalska (1990). They show that, under certain assumptions, predic-

tive control can stabilise plants when a terminal equality constraint is embedded in

the optimisation problem; that is, it is required that the terminal state is at a point

in the state space. Similar results also have been reported by Genceli and Niko-

laou (1993) and Rawlings and Muske (1993). However, from the computational

point of view, solving a nonlinear dynamic optimisation problem with equality

constraints is highly computationally intensive and in many cases is impossible to

perform within a limited time. Furthermore, the feasible region of the proposed

MPC is very small. To avoid this, Michalska and Mayne (1993) replaced terminal

equality constraints with terminal inequality constraints; that is, the allowable

terminal state is a region rather than a point in the state space. To guarantee

stability, a dual mode control scheme is proposed. The receding horizon control is

employed outside the terminal region and once the state arrives on the boundary

of the terminal region, a local linear state feedback controller is employed to steer

the state to an equilibrium.

Along this line, a most interesting result was recently presented by (Chen and
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Allgöwer, 1998). For a wide class of nonlinear systems, a MPC scheme with a

virtual linear stabilising control, rather than a dual mode control, is developed.

Stability is achieved by involving a terminal cost which bounds the infinite horizon

cost of the nonlinear system starting from the terminal region and controlled by the

local linear state feedback controller. However, the local state feedback control is

never implemented. This so-called quasi-infinite MPC algorithm solves on-line the

nonlinear optimisation problem with a performance index containing the terminal

cost subject to system dynamics, input constraints and the terminal inequality

constraints at each sampling time. Then the receding horizon control is employed

until the system arrives the equilibrium.

Apart from the above work on the stability of nonlinear MPC, the stability

of several existing nonlinear predictive control schemes has been examined by

Magni and Sepulchre (1997) using an inverse optimality approach. In particular,

it is shown that predictive control possesses the stability margin of optimal control

and it is robust in some sense. A more rigorous result for MPC has been developed

by Gyurkovics (1998). The receding horizon control is considered as a Bolza-type

optimisation problem. Using the optimality of the value function, the stability

condition is established.

Although rigorous stability results for nonlinear MPC have been established

(Gyurkovics, 1998; Magni and Sepulchre, 1997), they are not applicable in prac-

tical implementations. A constrained nonlinear optimisation problem has to be

solved on-line and the heavy on-line computational burden leads to two major

problems in the implementation of nonlinear MPC. One issue is the computational

delay which cannot be ignored and the other issue is that the global optimisation

solution cannot be guaranteed in each optimisation cycle since, in general, it is

a non-convex, constrained nonlinear optimisation problem. Neither of these is-

sues have been considered by Gyurkovics (1998) or Magni and Sepulchre (1997).

In view of the difficulty of guaranteeing the global minimisation of an objective

cost, this requirement has been relaxed for discrete-time systems in Scokaert et

al. (1999) and for continuous-time systems in Chen and Allgöwer (1998) where it

is pointed out that feasibility implies stability for a particular form of MPC (with
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linear terminal state feedback control).

The effects of computational delay in implementation of a controller have been

investigated by many authors (Pierre and Pierre, 1995; Rattan, 1989). In model

predictive control, several schemes taking into account computational delay have

recently been proposed for linear systems (Gomma and Owens, 1998; Von Wis-

sel et al., 1997; Casavola and Mosca, 1998). Gomma and Owens (1998) gave

a delayed generalised predictive control scheme where control only depends on

past measurements rather than current and past measurement. This strategy was

compared with Clarke et al. (1987) predictive control (Gomma and Owens, 1998).

Von Wissel et al. (1997) investigated the effect of computational delay in descrip-

tor predictive control. It is shown that the closed-loop system remains stable as

long as the delay is smaller than a specified threshold. Design of reference gover-

nors in predictive control with computation delay was addressed in Casavola and

Mosca (1998). Although the computational burden in nonlinear MPC is much

heavier than the linear one, only the algorithm proposed by Ronco et al. (1999),

Open-loop Intermittent Feedback Control, considers the computation delay in im-

plementation of MPC for nonlinear systems. Similar to other schemes considering

the computational delay the last control profile found by minimisation of the ob-

jective cost is used until the new optimisation process is finished and a new control

profile is available. It has been shown that this scheme is promising by application

to several plants. In addition to computational delay, sampling delay is considered

in Chen and Allgöwer (1998). Sampling delay is different from the computational

delay in that control depends on current measurement.

Recently Chen et al. (1999c) proposed a new nonlinear model predictive control

algorithm which can remove the computational burden and stability issues. The

proposed nonlinear predictive controller is given in a closed-form and thus no on-

line optimisation is required. The stability is also guaranteed. It is also pointed

out that the well-known computed torque method or dynamic inversion control is

a special case of this MPC algorithm (Chen et al., 1999b). However, this method is

only applicable for nonlinear systems with stable zero dynamics and a well-defined

relative degree.
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This paper develops a practical MPC with guaranteed stability for general

nonlinear systems. Several issues in the implementation of nonlinear MPC, in-

cluding computational delay, loss of optimality in the optimisation procedure and

stability, are addressed. A new stability condition is presented. The performance

index in MPC is modified to take computational delay into account. At each time

interval, the calculation of the control profile is divided into a two stage optimi-

sation problem. In the first stage, a “classic” fixed horizon MPC is solved. In

the second stage, a terminal control profile within a prescribed time interval is

optimised according to the stability requirements. It should be noted that the

terminal control is never implemented and it is only used to generate an initial

control profile in each optimisation cycle.

2 Problem formulation

Consider a nonlinear control system

ẋ(t) = f
(
x(t), u(t)

)
, x(t0) = x0 (11)

where x ∈ Rn and u ∈ Rm are the state and control vectors respectively. It is

supposed that the control input is subject to the constraint

u(t) ∈ U (12)

where 0 ∈ U ⊂ Rm is a compact and convex set.

In order to distinguish the real variables from the variables in the moving

horizon time frame, hatted variables are used in the moving horizon time frame in

this paper. In general, a nonlinear MPC problem can be stated as: for any state

x at time t, find a continuous function û(τ ; x(t)) : [t, t + T ] → U , in a moving

horizon time frame, T , such that the performance index

J1 = g(x̂(t + T )) +
∫ T

0
x̂(t + τ)T Qx̂(t + τ + û(t + τ ; x(t))T Rû(t + τ ; x(t))dτ (13)

is minimised where Q ≥ 0, R > 0 and û(·; x(t)) explicitly indicates the control

profile û depends on the state measurement x(t) at time t. It is required that
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g(x) is a continuous, differentiable function of x, g(0) = 0 and g(x) > 0 for all

0 6= x ∈ Rn. A typical choice of g(x) is given by

g(x) = x(t)T Px(t) (14)

where P ∈ Rn×n is a positive definite matrix.

Then the nonlinear MPC law is determined by

u(t) = û(t; x(t)) (15)

Assumptions on the system (12) are imposed:

A1 f : Rn×Rm → Rn is twice continuously differentiable and f(0, 0) = 0. 0 ∈ Rn

is an equilibrium of the system with u = 0.

A2 System (12) has an unique solution for any initial condition x0 ∈ Rn and any

piece-wise continuous and right-continuous u(·) : [0,∞) → U ;

A3 The nonzero state of the system (12) is detectable in the cost. That is,

Q1/2x 6= 0 for all nonzero x such that f(x, 0) = 0 (Sepulchre et al., 1996);

A4 All states, x(t), are available.

To implement the MPC, a constrained nonlinear optimisation problem must

be solved on-line. On-line optimisation is a major issue in nonlinear MPC imple-

mentation (Allgöwer and Zheng, 1998; Mayne, 1996; Biegler and Rawlings, 1991).

Due to the large computational burden, the computational delay time in MPC

is significant and cannot be ignored. The optimisation process for MPC with

computational delay is shown in Figure 1.

When the state measurement x(t) is available at the sampling time t, the

optimal control profile û(τ ; x(t)), τ ∈ [t, t + δ] yielded by minimisation of the cost

(14) is not available until time t+δ where δ is the computational delay. It makes no

sense to optimise the control profile û(τ ; x(t)), t ≤ τ ≤ t+δ from time t. Moreover

as will be shown later, it also causes mismatching in the MPC implementation and
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thus degrades system performance. Hence, in this paper the performance index

(14) is modified to

J = g(x̂(t + T )) +
∫ T

δ
x̂(t + τ)T Qx̂(t + τ) + û(t + τ ; x(t))T Rû(t + τ ; x(t))dτ (16)

At each measurement time, the optimisation problem (OP) to be solved on-line

can be mathematically formulated as

min
û:[t+δ,t+T )→U

J (17)

subject to 



terminal state constraint x(t + T ) ∈ Ω

the system dynamics (12)
(18)

There are two main advantages in formulating the model predictive control

in the form of the above OP (18) and (19). The first advantage is that a lower

computational burden exists when the optimisation occurs over the period [t +

δ, t + T ] compared to the period [t, t + T ]. This reduced optimisation period

occurs because the result of the optimisation is not available until time t + δ and

so the optimisation cannot alter the control that is implemented in the period

[t, t + δ]. The second major advantage is that at time t + δ when the new control

is implemented, there will be a closer match between the initial state x(t + δ) and

the predicted state x̂(t + δ) than with the originally measured state x(t).

It should be noted that, in additional to the terminal weighting in the perfor-

mance index (17), a constraint on the terminal states is imposed in OP. As will

be shown later, this is due to the stability requirement.

In MPC, one problem is to determine the computational delay off-line. This

depends on the computational methods used in solving the OP. The computa-

tional issue is an active subject in nonlinear MPC and many algorithms have

been proposed (Biegler and Rawlings, 1991; Zheng, 1997; Mayne, 1996). Several

computational algorithms have been compared and implemented on a continuous

stirred tank reactor (Sistu et al., 1993). We will not consider the choice of opti-

misation routine in this paper. The difficulty in determining the computational

delay off-line lies in that the computational times for different optimisation cy-

cles are different even for the same optimisation algorithm. It is well known that
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Implemented
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+ δ
Start time

x(t     )

τ

Figure 1: Nonlinear MPC with computational delay

the computational time is quite different in each nonlinear optimisation procedure

for different initial points and optimum. This makes it difficult to determine the

length of time taken to perform the optimisation off-line. However it will be shown

that although the global optimal solution is not achieved and only a local mini-

mum solution exits, or worse the optimisation procedure is not finished within the

prescribed time period, stability can still be guaranteed in the MPC algorithm

proposed in this paper. This makes it is possible to determine the computational

delay off-line.

Remark 1 : Chen and Allgöwer (1998) have considered the sampling time issue

in MPC implementation. That is, the control profile is implemented in an open-

loop manner until the updating new measurement arrives. This is different from

the computational delay considered in this paper. More specifically, the closed-

loop control profile in Chen and Allgöwer (1998) is defined as

u(τ) = û(τ ; x(t)), τ ∈ [t, t + δ1] (19)

where δ1 is the sampling time. This implies that the control depends on the current

state. However the MPC algorithm with computational delay can be considered

as

u(τ) = û(τ ; x(t)), τ ∈ [t + δ, t + 2δ] (20)
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This implies that the control depends on the past state measurement. The sam-

pling time is not considered in this paper since it is much smaller than the com-

putational time in Nonlinear MPC. However if the sampling time needs to be

considered, it is easy to handle it in our algorithm.

3 Terminal Region and MPC Algorithm

For the sake of simplicity, in this paper asymptotic stability of a system is taken

to mean that the system has an (asymptotically) stable equilibrium at the origin.

Definition 1 : The terminal region Ω in MPC is defined as a region where, once

the state x̂(t + T ), under the control û(τ ;x(t)), τ ∈ [t, t + T ) yielded by solution

of the OP (18–19), arrives, there exists a control û : [t + T,∞) → U which can

steer the state to the origin.

Lemma 1 : Suppose that the system (12) satisfies Assumptions A1–A4, then,

if there exists an α > 0 such that for any x ∈ Ω(α) = {x ∈ Rn : g(x) ≤ α}, there

exists control u ∈ U satisfying

∂g(x)
∂x

f(x, u) + xT Qx(t) + uT Ru ≤ 0, (21)

then Ω(α) is a terminal region for the nonlinear system (12) under the MPC with

the performance index (17). The proof of this is given in Appendix A.

Based on Lemma 1, a MPC algorithm with Guaranteed Stability (MPCGS) is

proposed as follows.

MPCGS Algorithm:

1. Measure the state x(t0). No control is imposed during the time interval

[t0, t0 + δ]. In the meanwhile, solving the OP (18) and (19) at t = t0 and

x(t) = x(t0) = x0 yields û(τ ; x(t)), τ ∈ [t + δ, t + T ).

2. Calculate û(τ ;x(t)), τ ∈ [t + T, t + T + δ), according to condition (22).

3. Implement the optimal open-loop control û(τ ; x(t)) for the time interval

[t + δ, t + 2δ]. Measure the state at the time t + δ and in the meantime, use
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the control û(·; x(t))′ : [t + 2δ, t + T + δ] → U , defined as

û(τ ; x(t + δ))′ =





û(τ ; x(t), τ ∈ [t + 2δ, t + T ]

û(τ ;x(t)), τ ∈ [t + T, t + T + δ]
(22)

as an initial solution of û(τ ;x(t + δ)) to solve the constrained optimisation

problem (18) and (19).

4. Let t = t + δ and Go to Step 2.

Remark 2 : When solving the OP, global minimisation or even local minimisa-

tion of the objective cost in the above MPCGS algorithm is not required. This is

important for engineering implementation. Since this problem is solved on-line, it

is difficult to guarantee the global optimal solution, and sometimes even a local

minimum cannot be achieved due to the time limitation. One of the key features

of the MPCGS algorithm is the way it determines an initial control profile for

each optimisation process based on the condition (22), which distinguishes it from

other existing MPC algorithms. When the optimisation algorithm starts form

this initial control profile, as we will show later, the feasibility and stability of the

proposed MPC are guaranteed.

Remark 3 : In each iteration of the MPCGS, two optimisation problems need

to be solved. One is the “classic” MPC optimisation problem. The other is the

optimisation problem in Step 2 to determine the terminal stabilising control. For

any x ∈ Ω, it is easy to solve this feasibility problem by a nonlinear optimisation

procedure. Particularly, for an affine nonlinear system, it will be shown later that

the non-linear terminal stabilising control is given in a closed-form and on-line

optimisation is not required.

Remark 4 : How to determine the computational delay off-line is important in

the proposed algorithm. It involves a trade-off between the computational bur-

den, robustness and the control performance. If the computation delay is chosen

too small, the performance is degraded although the stability can be guaranteed

since optimisation cannot be finished at each iteration. If the computation de-

lay is too large, the proposed MPCGS has less robustness against uncertainties
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and disturbances. How to analyse the robust stability of the closed-loop system

with computational delay is an interesting subject and some results have been

presented, for example see Chen et al. (1997), Chen and Gu (1991). However it is

beyond the scope of this paper.

4 Stability and Feasibility

Definition 2 : The feasibility region refers to a set of initial state points x(t0) for

which the state trajectory yielded by solving the OP terminates in the region

Ω(α).

Lemma 2 guarantees that if the nonlinear MPC problem is feasible at t0, it

is also feasible for all t > t0. This follows from modification of the standard

argument; for example, see Genceli and Nikolaou (1993), Michalska and Mayne

(1993), Chen and Allgöwer (1998).

Lemma 2 : Consider the nonlinear system (12) satisfying Assumptions A1–A4

with the input constraint (13). The feasibility of the MPCGS algorithm at time

t0 implies feasibility for all t > t0. The proof of this is given in Appendix B.

Theorem 1 : Suppose that Assumptions A1–A4 are satisfied and the MPCGS

algorithm is feasible at time t = t0. The MPCGS algorithm for the system (12) is

asymptotically stable if there exists control u(t) such that the following condition

is satisfied
∂g(x)
∂x

f(x, u) + xT Qx + uT Ru ≤ 0 (23)

for any state x belonging to the terminal region Ω. The proof of this is given in

Appendix C.

Corollary 1 : When the nonlinear system considered is affine, given by

ẋ(t) = f1(x) + g1(x)u (24)

condition (22) reduces to that

∂g(x)
∂x

f1(x)− ∂g(x)
∂x

g1(x)R−1g1(x)T
(

∂g(x)
∂x

)T

+ xT Qx ≤ 0. (25)
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and

u = −R−1g1(x)T
(

∂g(x)
∂x

)T

∈ U (26)

The terminal region is given by

Ω(α) = {x ∈ Rn : conditions (26–27) hold for all g(x) ≤ α} (27)

If condition (26) is satisfied, a control u(t) which steers the state to the origin is

given by (27). In particular, for a linear system

ẋ = Ax + Bu, (28)

when g(x) is chosen as (15), condition (26) becomes

AT P + PA− PBR−1BT P + Q ≤ 0. (29)

If this condition is satisfied, the terminal region is the whole state space, that is,

the MPCGS is global asymptotically stable.

Remark 5 : Corollary 1 shows that for linear systems, the stability result in this

paper reduces to that of the so-called Fake Algebraic Riccati Equation (Bitmead

et al., 1990; Poubelle et al., 1988). Hence, the stability condition for linear MPC

can be considered as a special case of our stability condition.

Remark 6 : When the terminal control is restricted to be linear and the termi-

nal weighting item is given by (15), the stability condition for nonlinear MPCGS

proposed in this paper reduces to the result in Chen and Allgöwer (1998), Michal-

ska and Mayne (1993). That is, the terminal region is given in (24) by replacing

u(t) with u(t) = kx(t) where k ∈ Rm×n is a constant matrix.

Remark 7 : Before using the proposed MPCGS, the terminal region should be

determined off-line. To determine the maximum attraction region of the proposed

MPCGS, it is required to calculate the maximum α such that (24) holds for any

x ∈ Ω(α). This can be done by making an iteration of the optimisation problem

max
x∈Ω(α)

min
u∈U

{
∂g(x)
∂x

f(x, u) + xT Qx + uT Ru

}
(30)

This is a max/min optimisation problem. The maximum α is given by increasing

α such that the value in (31) is nonnegative. In general it is not trivial to solve this
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max/min problem. A Linear Matrix Inequalities (LMI’s) approach is developed

to approximately solve this problem by Chen et al. (1999a).

However for an affine nonlinear system (25), with the help of the result in

Corollary 1, the maximum terminal attraction region can be achieved by solving

the following optimisation problem

maxα s.t. conditions (26–27) hold fo all g(x) ≤ α. (31)

This is a standard semi-definite optimisation problem which has been extensively

discussed; for example, see Polak et al. (1984) for a general setting or see Michalska

and Mayne (1993) for MPC.

5 A Simulation Example

Consider the van de Vusse reactor kinetic scheme where at an operating point,

the process model is given by (Mutha et al., 1997; Doyle et al., 1995):

ẋ1 = −50x1 − 10x2
1 + (10− x1)u

ẋ2 = 50x1 − 100x2 − x2u

y = x2 (32)

and x1 and x2 are the deviation variables for the concentration of components A

and B respectively. The control u is the inlet flow rate.

The control problem for this system is to control the concentration of the

component B, y, by the inlet flow rate, u. The nonlinear model predictive control

proposed in this paper is designed for this plant.

The performance index is chosen as (17) with the weighting matrices

P =




0.5 0

0 1


 ; (33)

Q =




0 0

0 2


 ; (34)
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and

R = 0.1 (35)

To determine the applicability and the stability region of the proposed nonlin-

ear MPC, the terminal region needs to be determined.

Since this is an affine nonlinear system, the terminal region is determined by

condition (26) in Corollary 1. For the plant (33) with the above weighting matrices

in the performance index (17), it can be shown that condition (26) is satisfied for

all states in the state space. The closed-loop system under the proposed nonlinear

model predictive controller is globally stable.

Following (27), the terminal stabilising nonlinear controller is given by

u(t) = −10
[

10− x1 −x2

]
Px

= −5(10− x1)x1 + x2
2 (36)

Now we consider the case where the terminal control is linear (Chen and Allgöwer,

1998; Michalska and Mayne, 1993). First the nonlinear system (33) is linearised

around the original point. The linearised system is given by

ẋ =



−50 0

50 −100


 x +




10

0


 u (37)

Solving the LQ optimal control problem with the weighting matrices Q and R in

(35–36) yields the feedback gain

k =
[

0.3148 0.3248
]
; (38)

The terminal stabilising control u is given by

u(t) = kx(t), (39)

The stability condition is given in (24) by replacing u(t) with (40). By solving

this semi-infinity optimisation problem (Chen and Allgöwer, 1998; Michalska and

Mayne, 1993), the terminal region is given by

Ω = {x ∈ R2|xT Px ≤ 9.63} (40)
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Figure 2: Control history
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Figure 3: Response
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Comparing with the global stability of the nonlinear terminal control law, the

above terminal region given by the linear terminal control law (40) is much smaller.

Hence, the new stability condition in this paper provides a much less conservative

result for nonlinear MPCGS.

The simulation results under the proposed nonlinear MPCGS are shown in

Figures 2 and 3. In the simulation, the predictive time is chosen as 0.05 hour. The

computational delay is chosen as 0.01 hour (36 seconds). The 4–5th order Runge-

Kutta numerical integration method with a fixed step size 0.002h(7.2s) is used for

the optimisation. The whole simulation is performed in the Matlab environment

with the nonlinear optimisation implemented using the Optimisation Toolbox.

The initial state of the plant is measured at time t = 0 and MPCGS starts the

optimisation procedure. Before the control profile is yielded by optimisation, no

control effort is imposed on the reactor, that is, the control effort is zero. When

the control profile is available after the computational delay, the control profile

is implemented and new states are measured for starting the new optimisation

procedure. It’s difficult to determine whether or not the global minimisation of the

cost is achieved in each optimisation cycle. Actually in some optimisation cycles,

the optimisation process is terminated since the prescribed maximum number of

evaluations is arrived at (the maximum number of evaluations in the optimisation

is set to be 100 times the number of variables in the simulation). This implies

that in some cases a local minimum has not been achieved. The resulting control

profile is shown in Figure 2. This may not be as smooth as expected but the

stability is guaranteed by the proposed MPCGS algorithm.

6 Conclusion

A practical MPC scheme for general nonlinear systems has been presented in this

paper. The main advantages and features of the proposed control scheme are that

• the computational delay caused by on-line optimisation is accounted for;

• no global solution to the on-line nonlinear optimisation is required;
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• a nonlinear terminal control is can be chosen if required and hence the ap-

plicability and stability regions of the nonlinear model predictive control is

enlarged;

• the feasibility of the proposed scheme implies stability when the proposed

initial control profile is used in each optimisation routine.

The proposed nonlinear MPC has been illustrated by a simulation example.

Compared to the linear terminal control the stability region is much enlarged due

to the new stability condition derived in this paper.

Several obstacles to implementation of MPC of nonlinear systems, including

loss of optimality in on-line nonlinear optimisation, computation delay due to

extensive computational burden and stability issue, have been removed. As a con-

sequence, the paper takes a step toward the development of practical MPC for

general nonlinear systems with unstable zero dynamics or an ill-defined relative

degree. Further investigation will focus on robustness of nonlinear MPC and re-

ducing the on-line computational burden using control parametrisation techniques

(Gawthrop et al., 1998; Vassiliadis et al., 1994).
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A Proof of Lemma 1

Suppose that there exists a control u(t) ∈ U such that the condition (22) is satisfied

for all x ∈ Ω(α). Then a corresponding u(t) ∈ U can be calculated according to

the condition (22) for any x ∈ Ω(α). Let u(t), t ∈ [T + t,∞) be such a control
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profile. Let V (x) = g(x) be a Lyapunov function candidate associated with the

state trajectory of the system (12) under this control profile. It is noted that g(x)

is a continuous, differentiable function of x. It follows from (22) that

V̇ (x) =
∂g(x)
∂x

f(x, u) ≤ −xT Qx− uT Ru ≤ −xT Qx ≤ 0 (41)

The inequality (42) implies that the Lyapunov function V (x) is non-increasing

along the state trajectory. If the state of the system is within the region Ω(α),

it remains in this region. The inequality (42) also implies that V̇ (x) = 0 only if

u(t) = 0 and the state trajectory belongs to the following set

N = {x(t) ∈ Rn : x(t)T Qx(t) = 0, t ∈ R}. (42)

Since Q1/2x 6= 0 for all nonzero x such that f(x, 0) = 0, one can prove that the

only positive half trajectory contained entirely in N is x(t) ≡ 0 (Sepulchre et

al., 1996; Gyurkovics, 1998). Remember that V (0) = g(0) = 0 and V (x) = g(x) >

0 for all x 6= 0. This implies that

‖x(t)‖ → 0 as t →∞ (43)

Hence under the control satisfying the condition (22), Ω(α) is an attraction region

of the system (12) with an equilibrium point x = 0. According to Definition 1,

Ω(α) is a terminal region of the MPC. QED.

B Proof of Lemma 2

When a MPC algorithm is implemented, due to the computational delay and no

prior information about the control input, in MPCGS proposed in this paper, no

control effort is imposed in the interval [t0, t0 + δ). The system (12) becomes

ẋ = f(x, 0), x(t0) = x0 (44)

At time t0 + δ, the free system (12) arrives at the state x(t0 + δ). Since the

MPCGS algorithm is feasible at time t0, it implies that we can find an (open-loop)

control profile û(·; x0): [t0 + δ, t0 + T ] → U which can drive the state x(t0 + δ)
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to arrive in the terminal set Ω(α) at the terminal time t0 + T by solving the OP

(18–19) at time t0.

Now we consider the feasibility of the NGPC at time t0 +δ. At the time t0 +δ,

the new state measurement x(t0 + δ) is available and the optimisation problem

OP with the initial state x(t0 + δ) needs to be solved. In our MPCGS algorithm,

this procedure starts from the following initial control profile û(·, x(t0 + δ))′ :

[t0 + 2δ, t0 + T + δ] → U , defined as in (23). The assumption that the MPCGS

is feasible at the time t0 implies that the first part of û(·, x(t0 + δ)′ can steer the

state into the terminal region at the time t0 +T . The second part of û(·, x(t0 + δ)′

is calculated in Step 2 in MPCGS which satisfies the condition (22). According to

the MPCGS Algorithm in Section 3, û(τ, x0), τ ∈ [t0 + δ, t0 + T ] is implemented

in the time interval [t0 + δ, t0 + 2δ], that is, u(τ) = û(τ ; x0), τ ∈ [t0 + δ, t0 + 2δ].

As a result, the system state at the time t + 2δ is given by x(t0 + 2δ)= x̂(t0 + 2δ)

under the assumption that there is no uncertainty and noise. Hence according to

Lemma 1, the terminal state x̂(t0 + T + δ)′ under the control profile û′ remains in

the terminal region Ω. Clearly, the optimisation problem at t0 + δ is feasible since

at least û(·, x(t0 + δ)′ is a feasible solution. Repeating the above deduction, one

can prove that the feasibility of the MPCGS algorithm at the time t = t0 implies

feasibility for all t > t0. QED

C Proof of Theorem 1

First we show that x = 0 is an equilibrium of the closed loop system under the

proposed MPCGS.

When x(t0) = 0 and under no control effort, it follows from f(0, 0) = 0 that

x(τ) = 0 for τ ∈ [t0, t0 + δ] (45)

That is, x(t0 + δ) = 0. It is clear that the optimal control profile which minimise

the cost (17) is given by

û(τ ; x(t0)) = 0, τ ∈ [t0 + δ, t0 + T ] (46)
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and as a result,

u(τ) = 0, for τ ∈ [t0 + δ, t0 + 2δ]. (47)

and

x(τ) = 0 for τ ∈ [t0 + δ, t0 + 2δ]. (48)

Repeating the above process, one can show that x = 0 is an equilibrium of

the closed-loop system consisting of the nonlinear system (12) and the proposed

MPCGS.

For the sake of notational simplicity, in the proof of Theorem 1, û(τ ;x(t)) is

replaced by û(τ) when this will not cause confusion. Similarly, the state under

the control û(τ ; x(t)) in the moving horizon time frame, T , is denoted by x̂(τ).

Clearly, the performance index (17) at time t depends on the initial x(t) and

the control profile û(τ ;x(t))∗ used in the moving horizon time frame, denoted by

J(x(t), û(·;x(t))∗) where û(τ ; x(t))∗ is any control profile. Let V (x(t + δ)) denote

such a performance cost under the control profile û(τ ; x(t)), that is,

V (x(t)) = J(x(t), û(·; x(t))

= g(x̂(t + T )) +
∫ T

δ
x̂(t + τ)T Qx̂(t + τ) + û(t + τ)T Rû(t + τ)dτ

(49)

Let V (x) be a candidate Lyapunov function for the closed-loop system. Similar

to the proof of x = 0 being an equilibrium of the closed-loop system under the

proposed MPCGS scheme in Lemma 2, it is trivial to show that V (0) = 0 since

g(0) = 0.

Now we prove that the Lyapunov function V (x) along the state trajectory

under the proposed MPCGS algorithm is non-increasing. Consider the Lyapunov

function value V (x(t + δ)). According to MPCGS Algorithm in Section 3, the

control profile û(τ ; x(t + δ)), τ ∈ [t + 2δ, t + T + δ), is obtained by starting the

optimisation procedure from the initial control profile u′ defined in (23).

Define the performance cost in (17) for the system under this control profile
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û(τ ;x(t + δ))′ in (23) as

V (x(t+δ))′ = g(x̂(t+T +δ)′)+
∫ T+δ

2δ
x̂(t+τ)′T Qx̂(t+τ)′+ û(t+τ)′T Rû(t+τ)′dτ

(50)

where x̂(t+ τ)′, τ ∈ [2δ, T + δ] denotes the system’s state under the control profile

û(τ ;x(t + δ))′ in (23).

The equation (51) can also be written as

V (x(t + δ))′ = g(x̂(t + T + δ)′)

+
∫ T

2δ
x̂(t + τ)′T Qx̂(t + τ)′ + û(t + τ)′T Rû(t + τ)′dτ

+
∫ T+δ

T
x̂(t + τ)′T Qx̂(t + τ)′ + û(t + τ)′T Rû(t + τ)′dτ (51)

Comparing (50) with (52) yields

V (x(t + δ))′ − V (x(t)) = g(x̂(t + T + δ)′)− g(x̂(t + T ))

+
∫ T+δ

T
x̂(t + τ)′T Qx̂(t + τ)′ + û(t + τ)′T Rû(t + τ)′dτ

−
∫ 2δ

δ
x̂(t + τ)T Qx̂(t + τ) + û(t + τ)T Rû(t + τ)dτ (52)

Remember that g(x) is continuously differentiable with respect to x. One has

g(x̂(t + T + δ)′)− g(x̂(t + T )′)

=
∫ T+δ

T

∂g(x̂(t + τ)′)
∂x̂(t + τ)

˙̂x(t + τ)′dτ

=
∫ T+δ

T

∂g(x̂(t + τ)′)
∂x(t + τ)′

f(x̂(t + τ)′, û(t + τ)′)dτ (53)

Following from the definition of û′ in (23),

û(t + τ ;x(t + δ))′ = û(t + τ ;x(t)) for τ ∈ [t + δ, t + T ]. (54)

This implies that

g(x̂(t + T ))′ = g(x̂(t + T )). (55)

In the time interval [t + T, t + T + δ], the control û(τ)′ satisfies condition (24).

Hence the following inequality holds
∫ T+δ

T

∂g(x̂(t + τ)′)
∂x(t + τ)′

f(x̂(t + τ)′, û(t + τ)′)dτ

≤
∫ T+δ

T
x̂(t + τ)′T Qx̂(t + τ)′ + û(t + τ)′T Rû(t + τ)′τ (56)
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Invoking (56) and (57) with (54) gives

g(x̂(t+T+δ)′)−g(x̂(t+T )) ≤
∫ T+δ

T
x̂(t+τ)′T Qx̂(t+τ)′+û(t+τ)′T Rû(t+τ)′τ (57)

Combining the above inequality with (53) yields

V (x(t + δ))′ − V (x(t)) ≤ −
∫ 2δ

δ
x̂(t + τ)T Qx̂(t + τ) + û(t + τ)T Rû(t + τ)dτ (58)

In the proposed MPCGS algorithm, the optimisation procedure at time t+δ starts

from the control profile (23). Minimisation of the performance index (17) yields

the control profile û(τ ; x(t + δ)). The performance cost under this control profile

is given by J(x(t + δ), û(·; x(t + δ))), ie., V (x(t + δ)). The Lyapunov function

V (x(t + δ)) along the state trajectory satisfies

V (x(t + δ)) ≤ V (x(t + δ))′ (59)

Combining (59) and (60) gives

V (x(t + δ))− V (x(t) ≤ −
∫ 2δ

δ
x̂(t + τ)T Qx̂(t + τ) + û(t + τ)T Rû(t + τ)dτ (60)

Remember that the control profile û(·; x(t)) is implemented in the time interval

[t + δ, t + 2δ] until the next control profile is yielded by optimisation. That is,

u(t + τ) = û(t + τ ; x(t)), τ ∈ [δ, 2δ] (61)

and

x(t + τ) = x̂(t + τ), τ ∈ [δ, 2δ] (62)

We have

∫ t+2δ

t+δ
x̂(τ)T Qx̂(τ) + û(τ)T Rû(τ)dτ =

∫ t+2δ

t+δ
x(τ)T Qx(τ) + u(τ)T Ru(τ)dτ (63)

The inequality (61) is equivalent to that of

V (x(t+δ))−V (x(t)) ≤ −
∫ 2δ

δ
x(t+τ)T Qx(t+τ)+u(t+τ)T Ru(t+τ)dτ ≤ 0 (64)

where the latter inequality follows from Q ≥ 0 and R > 0. Hence the Lyapunov

function (50) is non-increasing along the closed-loop system’s trajectory.
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Repeatedly using the inequality (65) yields

V (x(∞))− V (x(t0)) ≤ −
∫ ∞

t0+δ
x(τ)T Qx(τ) + u(τ)T Ru(τ)dτ

≤ −
∫ ∞

t0+δ
x(τ)T Qx(τ)dτ. (65)

Since V (x) is monotonically non-increasing and bounded from below by zero, the

integral in the right side of the inequality (66) converges and hence exists and is

bounded.

In addition, it can be shown that x(t) is uniformly continuous in t on [t0,∞)

under Assumption A1 (Desoer and Vidyasagar, 1975). Using Baralema’s Lemma,

this implies that xT Qx → 0 as t → ∞ (Hahn, 1967, proof of Theorem 26.4) or

(Khalil, 1992). When Q > 0 or Q ≥ 0 and Q1/2x 6= 0 for all nonzero x such that

f(x, 0) = 0, it is concluded that x(t) → 0 as t →∞ (Sepulchre et al., 1996; Magni

and Sepulchre, 1997). Hence the equilibrium point x = 0 of the system (12) is

asymptotically stable. QED
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