Millimeter-Long Carbon Nanotubes: Outstanding Electron-Emitting Sources

We are reporting the fabrication of a very efficient electron source using millimeter-long and highly crystalline carbon nanotubes. These devices start to emit electrons at fields as low as 0.17 V/μm and reach threshold emission at 0.24 V/μm. In addition, these electron sources are very stable and can achieve a peak current density of 750 mA cm<sup>–2</sup> at only 0.45 V/μm. In order to demonstrate intense electron beam generation, these devices were used to produce visible light by cathodoluminescence. Finally, density functional theory calculations were used to rationalize the measured electronic field emission properties in open carbon nanotubes of different lengths. The modeling establishes a clear correlation between length and field enhancement factor.