1	Middle Holocene	marine flooding	and human res	ponse in the south	Yangtze

2 coastal plain, East China

- 3 Zhanghua Wang^{1*}, David B. Ryves², Shao Lei³, Xiaomei Nian¹, Ye Lv¹, Liang Tang¹,
- 4 Long Wang¹, Jiehua Wang³, Jie Chen⁴
- ⁵ ¹State Key Laboratory of Estuarine and Coastal Research, East China Normal
- 6 University, Shanghai 200062, China.

⁷²Centre for Hydrological and Ecosystem Science (CHES), Department of Geography,

- 8 Loughborough University, Loughborough LE11 3TU, UK.
- ⁹ ³Ningbo Municipal Institute of Cultural Relics and Archaeology, Ningbo 315000,

10 China.

- ⁴Shanghai Museum, Shanghai 200003, China
- 12 *Corresponding author: <u>zhwang@geo.ecnu.edu.cn</u>
- 13

14	Abstract: Coastal flooding catastrophes have affected human societies on coastal
15	plains around the world on several occasions in the past, and are threatening 21th
16	century societies under global warming and sea-level rise. However, the role of
17	coastal flooding in the interruption of the Neolithic Liangzhu culture in the lower
18	Yangtze valley, East China coast has been long contested. In this study, we used a
19	well-dated Neolithic site (the Yushan site) close to the present coastline to
20	demonstrate a marine drowning event at the terminal stage of the Liangzhu culture
21	and discuss its linkage to relative sea-level rise. We analysed sedimentology,
22	chronology, organic elemental composition, diatoms and dinoflagellate cysts for

23	several typical profiles at the Yushan site. The field and sedimentary data provided
24	clear evidence of a palaeo-typhoon event that overwhelmed the Yushan site at ~2560
25	BCE, which heralded a period of marine inundation and ecological deterioration at
26	the site. We also infer an acceleration in sea-level rise at 2560–2440 BCE from the
27	sedimentary records at Yushan, which explains the widespread signatures of coastal
28	flooding across the south Yangtze coastal plain at that time. The timing of this mid-
29	Holocene coastal flooding coincided with the sudden disappearance of the advanced
30	and widespread Liangzhu culture along the lower Yangtze valley. We infer that
31	extreme events and flooding accompanying accelerated sea-level rise were major
32	causes of vulnerability for prehistoric coastal societies.
33	Keywords: Palaeo-typhoon event; Sea-level rise; Coastal flooding; Neolithic
34	
35	1. Introduction
36	Global sea-level rise is predicted to accelerate during the 21st century and could
37	rise 65±12 cm by 2100 compared with 2005 (Kopp et al., 2016; Nerem et al., 2018),
38	which will increase the frequency of extreme events and the risk of coastal flooding

39 (Woodruff et al., 2013). The vulnerability of low-lying coastal plains and deltas

40 across the world is further exacerbated due to human-induced sediment starvation and

41 land sinking (Syvitski et al., 2009; Giosan et al., 2014). The west Pacific Ocean coast

- 42 is one of the most vulnerable regions in the world because it is characterized by active
- 43 tropical cyclones (Woodruff et al., 2013) and, in recent decades, its rate of relative
- sea-level rise is three times higher than the global mean (Nicholls and Cazenave,

45	2010). In the densely-populated Yangtze delta, East China (Fig. 1), models under
46	future climate scenarios predict an increase in flood risk from extreme events and
47	relative sea-level rise by 150% to 400% in the next 50 years (Tessler et al., 2015). In
48	fact, Typhoon Fitow (the strongest October typhoon making landfall in China for over
49	60 years) in 2013 caused flooding to a depth >0.5 m across most of the Yaojiang
50	Plain, south east of the Hangzhou Bay (Fig. 1C). There is thus clearly an urgent need
51	for integrated research on sea-level rise, extreme events, coastal flooding and human
52	response.
53	Coastal flooding is not a new threat. The fact that the south Yangtze coastal
54	plains (Fig. 1B) hold relative thick and rich archaeological records, preserved in
55	marine and deltaic flood basin sediments (Zong et al., 2007; Zheng et al., 2012), is
56	direct witness of past flooding of these areas during human occupation. Neolithic
57	people including the well-known Kuahuqiao, Hemudu and Liangzhu cultures settled
58	and practiced flood management on the coastal wetlands of Hangzhou Bay (Fig. 1)
59	since ~6000 BCE (Zhao, 1998; Zong et al., 2007; Liu and Chen, 2012; Qin, 2013; Liu
60	et al., 2017). People of the Liangzhu culture, which was one of the most developed
61	and complex societies known in prehistory (Lawler, 2009; Liu and Chen, 2012; Qin,
62	2013), even constructed massive earth-and-stone walls to hold back floods near their
63	capital city, Mojiaoshan, at the head of Hangzhou Bay near present-day Hangzhou
64	(Fig. 1B; Lawler, 2009; Liu and Chen, 2012; Liu et al., 2017). Yet they abandoned
65	their state capital complex at around 2500 BCE, as shown by dating sedimentary
66	profiles from the capital city (Zhang et al., 2015; Wang et al., 2017), despite their $_3$

67	highly developed techniques in agricultural and landscape management (Zhuang et
68	al., 2014; Liu et al., 2017). The subsequent Neolithic Qianshanyang and Guangfulin
69	cultures that appeared at \sim 2400–1800 BCE were reported to be much less organized
70	and less developed (Shanghai Museum, 2002; ZPICRA and Huzhou Museum, 2014).
71	Studying these archaeological records with a focus on the linkage between flood
72	deposits and cultural interruptions can shed light on the increasing flood risk in this
73	economically important and populous area in the near future.
74	There has been much speculation and debate surrounding the Liangzhu cultural
75	decline among archaeologists and environmental scientists. Archaeologists speculate
76	that the abandonment of the Liangzhu capital city might have been related to floods
77	because a layer of silt, inferred as flood deposits, was found on top of the late
78	Liangzhu cultural layer in many areas around the capital city (Liu and Chen, 2012).
79	An early environmental study suggested marine inundation played a key role, based
80	on the marine fossil record of core ZX-1 in the eastern Taihu Plain (Stanley et al.,
81	1999), but later work reported no marine flooding at other sites in the Taihu Plain at
82	this time (Zong et al., 2011). Later Innes et al. (2014) suggested a combination of
83	rising local water level and climatic deterioration was the probable cause. We propose
84	that to settle the debate and test these competing hypotheses, it is necessary to carry
85	out an integrated study of relative sea-level change and environmental and human
86	response. It is particularly important to examine directly the event-character of the
87	floodbeds covering the Liangzhu culture layer recovered from archaeological sites.

88	The Yushan archaeological site was discovered in 2013. It is only 7.3 km from
89	the present coastline (Figs 1, 2A). Diagnostic black pottery and tools for
90	woodworking and farming (Fig. 1D–F) of the Liangzhu culture were recovered from
91	this site. The Liangzhu cultural layer was overlain by mud deposits $\sim 0.4-0.5$ m thick
92	which did not contain artefacts, hinting at an inundation event at the end of the
93	Liangzhu culture. Yushan may therefore be key to addressing this debate based on a
94	detailed investigation of the stratigraphic records within this site and may provide
95	important evidence on the mechanisms involved in the decline of the Liangzhu
96	culture. In this study we first carried out multiproxy lithological, sedimentological,
97	palaeontological and organic geochemical analyses of well-dated, high-resolution
98	sequences at multiple locations within the Yushan site to examine the nature of flood
99	deposits covering the Liangzhu cultural layer. We then determined the relative sea
100	level change at the end of the Liangzhu culture using sea level indicators, including
101	the basal peat (Shennan et al., 2015) obtained from the Yushan site. We also
102	synthesised existing profiles from both the Taihu Plain and plains along Hangzhou
103	Bay to compare the flood signatures and to discuss the linkage between relative sea-
104	level rise and flood hazards at the late stage of the Neolithic period on the south
105	Yangtze coast, East China. The results help to resolve this debate over the Liangzhu
106	cultural decline and marine flooding and show the sensitivity and vulnerability of
107	prehistorical human societies to extreme events and flooding.
108	

2. The study area and the site

110	The south Yangtze coastal plain is mainly made up of the Taihu Plain and coastal
111	plains along the Hangzhou Bay, including the Yaojiang Plain, which is located to the
112	south east and is separated by uplands from Hangzhou Bay (Fig. 1B). Sediments
113	deposited in these plains were derived mainly from the Yangtze River during the
114	Holocene, as sediment load from other local rivers is negligible compared to that from
115	the Yangtze River (Liu et al., 2013). The freshwater-dominated Taihu Plain was
116	formed ~6500–6000 years ago when sea level was relatively stable and the Yangtze
117	delta started its progradation (Hori et al., 2001; Wang et al., 2012). However, the rate
118	of shoreline advance was extremely slow between 6500 and 4000 years ago, as
119	indicated by distribution of the chenier ridges in the east part of the plain (Fig. 1B;
120	Yan et al., 1989), caused mainly by a large amount of sediment trapping in the north
121	Yangtze delta plain (Li et al., 2002; Hori et al., 2001) and the decline in the Yangtze
122	sediment supply owing to weakening of the East Asian Summer Monsoon ~6000
123	years ago (Zhan et al., 2012). Rapid shoreline accretion only occurred over past 2000
124	years, in concert with an increase in sediment supply from human activity (Hori et al.,
125	2001; Wang et al., 2011). Sediment cores from the south coastal plain of Hangzhou
126	Bay demonstrate that rapid infilling of Hangzhou Bay occurred during the early
127	Holocene (Gao and Collins, 2014; Zhang et al., 2015). A long period of sedimentary
128	hiatus then occurred during the middle to late Holocene with return to net
129	sedimentation in Hangzhou Bay only in the past 2000 years (Gao and Collins, 2014;
130	Zhang et al., 2015).

131	Tide dominates the south Yangtze coast with a mean tidal range of 2.7 m (Chen
132	et al., 1985). The Yaojiang Plain of south east Hangzhou Bay has a smaller mean tidal
133	range of 1.85 m. Uehara et al. (2002) reconstructed the palaeotidal fields in the
134	Yangtze Estuary and the east China marginal sea by including the effect of palaeo-
135	topographic change from sedimentation since the Last Glacial Maximum. The
136	simulated amplitude M_2 tide, which is the most significant component of tide in this
137	region, was 1.0–1.2 m on the coast south to the Hangzhou Bay (including the
138	Yaojiang Plain) and 1.2–1.4 m on the coast of Taihu Plain during the middle
139	Holocene (6 ka; Uehara et al., 2002). It has increased to 1.2–1.6 m in the inner and
140	south part of the Hangzhou Bay at the present day, while remaining at 1.0–1.2 m in
141	the south east part of the Bay. Ground elevation is 0–2 m above present mean sea
142	level (the Yellow Sea datum, MSL_{YSD}) in most of central Taihu Plain and Yaojiang
143	Plain, and 2–5 m in the plains along Hangzhou Bay (Fig. 1B).
144	The Yushan site is located in the north east of Yaojiang Plain, between the edge
145	of the upland and the floodplain (Fig. 1). The site was excavated by the Ningbo
146	Municipal Institute of Cultural Relics and Archaeology over an area of 4300 m ²
147	during September, 2014 to January, 2015. Each excavation unit is 10 m \times 10 m in size
148	(Fig. 2A). The archaeological sequence spans from the early/middle Hemudu culture
149	to the Song dynasty, with ten layers numbered top to bottom correlating to distinct
150	lithology, sedimentology and archaeological finds across the site (Table 1). Individual
151	cultural layers are typically 25–50 cm thick, with the whole sequence spanning 1–2.5

m across the site (Fig. 2B, C). The cultural layers onlap the weathered bedrock or
hardened mud surfaces in excavation units close to the upland, such as T0410 and
T0513. The Holocene base then dips rapidly and is buried below the floodplain (Fig.
2).

Among the 10 layers (Table 1), layers 9, 7, 6 and 3 are composed of organic-rich 156 mud or peat that contain artefacts of prehistoric early and middle Hemudu, late 157 Hemudu and Liangzhu cultures and from the Shang and Zhou dynasty, respectively. 158 Layers 10, 8, 5 and 4 are devoid of any cultural artefacts and are considered to be 159 160 formed without human disturbance. Note that layer 7 only occurs at the edge of the 161 upland, such as in unit T0410 (Fig. 2C). In addition, an erosional surface is prominent on top of the peat layer 6a in many units, and this peat layer is totally eroded away 162 163 even in those units close to the upland (Figs 2, 3). Together with the erosional surface, a sand ridge of 20–30 cm high and ca. 60 cm wide that was defined as layer 5b, dips from the 164 edge of upland eastward and cuts into layer 6 (Fig. 3D–F). Gravels, fragments of Liangzhu 165 166 artefacts and abundant plant fragments were present in the sand ridge. Mixtures of sand and mud, also defined as layer 5b, only occurs above the erosional surface in the 167 168 area between the sand ridge and the upland.

169

170 **3. Materials and Methods**

During our excavation, we carefully examined the lithological and stratigraphic
sequences in each excavation unit. We selected the north wall of unit T0415 for

analyses of proxies including organic chemistry, diatoms and dinoflagellate cysts,
because this unit is on the east edge of the excavation area where less human
disturbance occurred (Fig. 2A). We also collected samples for these proxy analyses
from unit T0410 because layer 7 is missing in unit T0415. We then identified the
sedimentary facies of each layer and recognized marine inundation by examining the
lithology and analysing proxies.

Twenty-seven (27) samples were collected from the north wall of unit T0415 for 179 analyses of organic carbon and diatoms. Thirty-four (34) samples from layer 3 to 9 180 181 from the west wall of unit T0410 and seven samples from layer 6 of unit T0415 were collected for dinoflagellate cyst identification. In addition, seven tree stumps collected 182 from the top of peat layer 6 in units T0214, T0314, T0315 and T0415 were identified 183 184 at species level at the Institute of Archaeology, Chinese Academy of Social Science. Samples for organic carbon measurement were dried at 40°C in an oven and 185 milled to powder. Two aliquots were prepared for each sample: (1) 20 mg powder 186 187 was used to measure total carbon and total nitrogen (TN) using a vario MAX cube CN analyser (Elementar, Germany) (error <1%) at the State Key Laboratory of Marine 188 189 Geology, Tongji University, China; (2) about 0.5 g powder was mixed with 0.1 M hydrochloric acid (HCl) for 24 hours to remove carbonate and then washed with 190 deionized water thoroughly until the pH was neutral. The neutral specimen was dried 191 at 40°C and then used for measurement of TOC by vario MAX cube CN analyser 192 (error <1%) at Tongji University and $\delta^{13}C_{V-PDB}$ % (error, ±0.2%); reference material: 193 Urea and Acetanilide) by Delta V Advantage Isotope Ratio Mass Spectrometer 194

195	(Thermo Scientific, Germany) at the Third Institute of Oceanography, State Oceanic
196	Administration of China. Samples for diatom analysis were prepared at
197	Loughborough University in a water bath using 30% H ₂ O ₂ to remove organic matter
198	and HCl to remove carbonates, following the procedure of Renberg (1990), and
199	permanent slides counted on a Leica DME light microscope (numerical aperture =
200	1.4) under oil immersion and phase contrast at x1000 magnification. Samples for
201	dinoflagellate cysts identification were treated following standard procedures of
202	pollen analysis (Moore et al., 1990) and the species were counted using a Leica
203	optical microscope at x400 magnification. The identification of dinoflagellate cysts
204	was made according to regional taxonomic guides (He et al., 2009; Mao et al., 2011;
205	Tang et al., 2013).
206	For building the chronology, eight samples of charcoal, plant fragment and
206 207	For building the chronology, eight samples of charcoal, plant fragment and organic sediment from units T0410 and T0513 were AMS ¹⁴ C dated by Beta Analytic,
206 207 208	For building the chronology, eight samples of charcoal, plant fragment and organic sediment from units T0410 and T0513 were AMS ¹⁴ C dated by Beta Analytic, USA, and calibrated using the Calib 7.1 program (Stuiver et al., 2015; Table 2).
206 207 208 209	For building the chronology, eight samples of charcoal, plant fragment and organic sediment from units T0410 and T0513 were AMS ¹⁴ C dated by Beta Analytic, USA, and calibrated using the Calib 7.1 program (Stuiver et al., 2015; Table 2). Furthermore, a sample from the sand ridge above the peat layer in T0513 (Fig. 3E)
206 207 208 209 210	For building the chronology, eight samples of charcoal, plant fragment and organic sediment from units T0410 and T0513 were AMS ¹⁴ C dated by Beta Analytic, USA, and calibrated using the Calib 7.1 program (Stuiver et al., 2015; Table 2). Furthermore, a sample from the sand ridge above the peat layer in T0513 (Fig. 3E) was dated using single-grain optically stimulated luminescence (OSL) measurement
206 207 208 209 210 211	For building the chronology, eight samples of charcoal, plant fragment and organic sediment from units T0410 and T0513 were AMS ¹⁴ C dated by Beta Analytic, USA, and calibrated using the Calib 7.1 program (Stuiver et al., 2015; Table 2). Furthermore, a sample from the sand ridge above the peat layer in T0513 (Fig. 3E) was dated using single-grain optically stimulated luminescence (OSL) measurement of quartz (Duller, 2008). In total, 3500 grains of quartz (180–224 µm) were measured
206 207 208 209 210 211 212	For building the chronology, eight samples of charcoal, plant fragment and organic sediment from units T0410 and T0513 were AMS ¹⁴ C dated by Beta Analytic, USA, and calibrated using the Calib 7.1 program (Stuiver et al., 2015; Table 2). Furthermore, a sample from the sand ridge above the peat layer in T0513 (Fig. 3E) was dated using single-grain optically stimulated luminescence (OSL) measurement of quartz (Duller, 2008). In total, 3500 grains of quartz (180–224 µm) were measured and 37 grains were accepted for age determination (Table 3; Fig. S1). Luminescence
206 207 208 209 210 211 212 213	For building the chronology, eight samples of charcoal, plant fragment and organic sediment from units T0410 and T0513 were AMS ¹⁴ C dated by Beta Analytic, USA, and calibrated using the Calib 7.1 program (Stuiver et al., 2015; Table 2). Furthermore, a sample from the sand ridge above the peat layer in T0513 (Fig. 3E) was dated using single-grain optically stimulated luminescence (OSL) measurement of quartz (Duller, 2008). In total, 3500 grains of quartz (180–224 µm) were measured and 37 grains were accepted for age determination (Table 3; Fig. S1). Luminescence measurements were carried out by an automated Risø-TL/OSL DA-20 DASH reader
206 207 208 209 210 211 212 213 214	For building the chronology, eight samples of charcoal, plant fragment and organic sediment from units T0410 and T0513 were AMS ¹⁴ C dated by Beta Analytic, USA, and calibrated using the Calib 7.1 program (Stuiver et al., 2015; Table 2). Furthermore, a sample from the sand ridge above the peat layer in T0513 (Fig. 3E) was dated using single-grain optically stimulated luminescence (OSL) measurement of quartz (Duller, 2008). In total, 3500 grains of quartz (180–224 µm) were measured and 37 grains were accepted for age determination (Table 3; Fig. S1). Luminescence measurements were carried out by an automated Risø-TL/OSL DA-20 DASH reader equipped with a ⁹⁰ Sr/ ⁹⁰ Y beta source (Bøtter-Jensen et al., 2003) and an ET EMD-
206 207 208 209 210 211 212 213 214 215	For building the chronology, eight samples of charcoal, plant fragment and organic sediment from units T0410 and T0513 were AMS ¹⁴ C dated by Beta Analytic, USA, and calibrated using the Calib 7.1 program (Stuiver et al., 2015; Table 2). Furthermore, a sample from the sand ridge above the peat layer in T0513 (Fig. 3E) was dated using single-grain optically stimulated luminescence (OSL) measurement of quartz (Duller, 2008). In total, 3500 grains of quartz (180–224 µm) were measured and 37 grains were accepted for age determination (Table 3; Fig. S1). Luminescence measurements were carried out by an automated Risø-TL/OSL DA-20 DASH reader equipped with a ⁹⁰ Sr/ ⁹⁰ Y beta source (Bøtter-Jensen et al., 2003) and an ET EMD- 9107 photomultiplier tube at the State Key Laboratory of Estuarine and Coastal

217	We also decided to use the south excavation wall of unit T0513 and west wall of
218	unit T0410 for relative sea level reconstruction. In the south wall of unit T0513, the
219	Holocene base of hardened mud dips gradually from west to east while peaty mud
220	layer 9 and peat layer 6a formed the basal peat from east to west, respectively (Fig.
221	2B). In the west wall of unit T0410, as the thick layer of peat (layer 6) was eroded
222	away and the sedimentary sequence above the Holocene base is only ~ 150 cm thick in
223	the north part (Fig. 2C), sediment compaction can be neglected when applying the
224	sea-level indicators from this profile. When collecting the radiocarbon dating
225	material, three sample from layers 9, 8 and 6 in unit T0513, and three samples from
226	layers 7, 4 and 3 in unit T0410 were chosen for reconstruction of relative sea levels
227	(Fig. 2B, C; Table 4). We used the basal peat and stratigraphic approach to determine
228	the palaeo-relative sea levels after identification of these sea-level indicators (Wang et
229	al., 2013; Shennan et al., 2015). We used a total station to measure the elevation of
230	the Holocene base in units T0410 and T0513, where samples of sea-level indicators
231	were collected. We further used the tidal levels calculated from the records of Zhenhai
232	gauge station (Fig. 1B) during AD 1958–1980 because a previous study simulated
233	little change in the tidal range for the coast of Yaojiang Plain from the middle
234	Holocene (6 ka) to the present day (Uehara et al., 2002). As a present-day, high-
235	resolution topographic dataset (<u>http://www.gscloud.cn</u>) demonstrates that the present-
236	day freshwater marsh mostly develops at \sim 0–0.5 m above the mean spring high water
237	(MSHW) in the Yaojiang plain, freshwater marsh habitat inferred from palaeodata
238	was therefore considered to be 0–0.5 m above the MSHW (Table 4).

239	In addition, we collected and recalibrated 80 published radiocarbon ages (Table
240	S1) during and after the Liangzhu culture from Neolithic sites across the East China
241	coastal plain using the Calib 7.1 programme (Stuiver et al., 2015) to revise the time
242	span of the Liangzhu culture. We also compiled all published sedimentary profiles
243	dated by AMS ¹⁴ C in the study area (Fig. S2 for their location) and compared the
244	database covering the end of the Liangzhu culture which included radiocarbon ages
245	(also recalibrated; Table S2), ecological and environmental proxies, and signals of
246	flooding (Table 5).
247	
248	4. Results
249	4.1 Holocene stratigraphy and sedimentary environmental change at Yushan
250	There is clear variation in organic geochemistry in each layer, distinguishing the
251	terrestrial or marine source of organic carbon (Fig. 4). Diatom preservation is poor
252	throughout much of the sequence, and identifiable valves were only observed in
253	layers 9, 8 and 6, and in a single sample of layer 5. Such preservation problems are
254	typical for coastal sediments (Ryves et al., 2004). By contrast, dinoflagellate cysts of
255	marine genera including Spiniferites, Operculodinium and Lingulodinium were found
256	in the non-cultural layers of 8, 5 and 4 and the bottom section of layer 3. Below we
257	present the results of chronology, stratigraphic patterns of proxies and interpretation
258	of sedimentary environments of layers 10-2.
259	Layer 10 (mud before the early Hemudu culture). Levels of TOC and TN are

260 generally low (<1% and <0.2%, respectively; Fig. 4A) and values of TOC/TN and

261	δ^{13} C indicate that the dominant source of organic carbon was freshwater algae or
262	freshwater particulate organic carbon (POC) (Fig. 4B; Lamb et al., 2006). A
263	terrigenous environment is thus inferred for the Yushan site before the settlement of
264	Hemudu people.
265	Layer 9 (early to middle Hemudu culture). A charcoal sample from this peaty
266	mud layer was dated to 4440-4540 BCE (median age 4490 BCE; Table 2), which is in
267	agreement with the artefacts of early to middle Hemudu culture found in this layer.
268	TOC increases to ~5%; δ^{13} C analyses indicate that the organic carbon was derived
269	from terrestrial C ₃ plants and freshwater POC or algae (Fig. 4A, B). Diatoms are
270	sparse in the bottom samples of this layer, consisting of robust, freshwater benthic
271	forms. The middle sample in this section contained several whole cells of Amphora
272	copulata, a benthic species more typical of higher conductivity freshwaters. The
273	presence of whole cells suggests that the diatoms were growing in situ, rather than
274	transported to the site, implying shallow water. Subsequent samples at the top of this
275	layer 9 included taxa typical of somewhat fresher, low nutrient and lower pH waters,
276	such as Eunotia and Pinnularia, along with some elongate Fragilaria. No marine
277	dinoflagellate cysts was observed. A coastal freshwater marsh environment was
278	identified during the early to middle Hemudu period.
279	Layer 8 (artefact-absent mud covering the early to mid-Hemudu cultural layer).
280	A radiocarbon age of 4310 BCE (4260-4360 BCE) was obtained from a sample of
281	plant fragments in the bottom section of this layer. TOC decreases sharply (<1%) and
282	its isotopic composition demonstrates a terrestrial origin (Fig. 4B). However, a few

283	valves of marine	coastal taxa	(such as	Rhaphoneis)	were encountered	(Fig.	4 A).
-----	------------------	--------------	----------	-------------	------------------	-------	--------------

Furthermore, of the four samples analysed, the uppermost sample had no marine

dinoflagellate cysts, while concentrations for the other three were 332, 78 and 365

- 286 cysts g^{-1} dry weight (dw). An upper tidal flat environment was thus inferred at the site
- after the end of the middle Hemudu culture.
- 288 *Layer 7 (late Hemudu culture).* Radiocarbon dating of charcoal from this organic-
- rich mud layer gives an age of 4020 BCE (3945–4170 BCE; Table 2), supporting the
- 290 finds of artefacts of late Hemudu culture found in this layer. Organic carbon was
- derived from freshwater algae or POC and some terrestrial C₃ plants (Fig. 4B). Only
- two samples contained marine dinoflagellate cysts among five samples in layer 7,
- with concentrations of 53 and 582 cysts g^{-1} dw. These data indicate a saltmarsh
- environment during the late Hemudu culture.
- *Layer 6 (Liangzhu culture)*. Radiocarbon ages from two samples from the bottom
- and upper section of this layer are 3570 BCE (3515–3640 BCE) and 2760 BCE
- 297 (2635–2880 BCE), respectively (Table 2; Fig. 3A), which is consistent with the
- Liangzhu artefacts found in this layer. Rooted *in situ* at the top of this peat layer are
- 299 many tree stumps at the edge of the excavation area (Fig. 3B, C), all of which have
- been identified as mature willow (*Salix*; \sim 12–25 cm in diameter; 1–6 trees per
- 301 excavation unit of 100 m^2). This shrub is typical of the natural Yangtze coastal
- freshwater marsh, a zone located above MSHW (Zong et al., 2007; 2011). Both TOC
- and TN increase steadily throughout layer 6, reaching values of almost 21% (TOC)
- and 1% (TN). Values of δ^{13} C of approximately –28‰ and TOC/TN >15 imply that

305	this OC was dominantly derived from terrestrial C ₃ plants. Furthermore, a diverse
306	flora of diatoms typical of shallow, freshwater/slightly brackish conditions appeared,
307	including species of Cymbella, Amphora, Gyrosigma, Nitzschia and Navicula. Higher
308	up the sequence, taxa typical of more distinctly brackish conditions were also found,
309	including Ctenophora pulchella, Rhopalodia gibba and Chaetoceros cysts, as well as
310	more clearly freshwater and low alkalinity taxa (Eunotia, Pinnularia, Cocconeis),
311	suggesting a mixture of shallow wetland, freshwater and coastal marine habitats in the
312	vicinity of the site. No marine dinoflagellate cysts was found. A coastal freshwater
313	marsh close to the MSHW is inferred during the Liangzhu culture.
314	Layer 5b (gravelly sand, sand or sand-mud mixture cutting into the Liangzhu
315	peat). The sedimentary composition of the sand ridge consisting of gravel, sand and
316	fragments of the Liangzhu artefacts indicates strong hydrodynamic force during its
317	formation. A radiocarbon age of 2760 BCE was derived from the plant fragments
318	within the sand ridge, being identical with that of the underlying peat (Table 2),
319	reflecting reworking from the peat. This sand ridge cutting into the peat layer,
320	together with the sedimentary architecture including the erosional surface and tree
321	stumps at the top of the underlying peat layer, reflect strong erosion and sudden
322	deposition during a major storm event. Previous studies has reported similar
323	deposition facies and sequences during storm events, such as the development of
324	chenier ridges on the tidal flat of the Yangtze coast (Yan et al., 1989). OSL dating of
325	single quartz grains within the sand ridge yielded an age of 4.59 ± 0.24 ka BP (with a
326	central age of 2575 BCE; Table 3).
	15

327	Layer 5a (artefact-absent mud covering the Liangzhu layer). Similar to layer 8
328	which overlies the early to mid-Hemudu peat, layer 5a of homogenous mud overlays
329	the Liangzhu peat in many units. At the bottom of this layer, TOC also abruptly
330	declines to $<1\%$ similar to the change from layer 9 to layer 8, with a simultaneous
331	dramatic increase in δ^{13} C (to -20.66‰) and a decrease in TOC/TN to <8 (Fig. 4A),
332	implying that this organic matter was derived from marine algae or marine POC (Fig.
333	4B). In the upper part of layer 5, TOC increases slightly and $\delta^{13}C$ shifts to the
334	freshwater algal or POC range, indicating a short period of desalinisation. Some valve
335	fragments of marine plankton (such as large Coscinodiscus) were encountered in one
336	sample. Concentration of marine dinoflagellate cysts were abundant (~700–1500 g^{-1}
337	dw) in the whole section. Coastal marine sediment is thus inferred for this layer. We
338	argue that this layer also represents the deposits of the storm event, due to its very
339	high sedimentation rate compared to other layers, and the desalinisation signal
340	inferred from the organic carbon source in the upper part (Fig. 4A). We suggest this
341	mud layer was formed by rapid settling of suspended sediments after the storm, which
342	reworked fine-grained sediments from offshore areas and transported these onshore.
343	The increase in terrestrial organic carbon input in the upper section is an indication of
344	the large amount input of freshwater discharge caused by intense precipitation
345	associated with the storm.

Layer 4 (artefact-absent mud). An age of 2335–2495 BCE was derived from the
bottom of this layer. TOC drops further and was dominated by marine POC or

bacterial OC (Fig. 4). Some unidentifiable girdle bands of a large centric diatom,

349	probably a marine planktonic species, was found in one sample. Concentration of
350	marine dinoflagellate cysts is high (500–1500 g^{-1} dw). Together with the lithological
351	feature of silt lamination, we suggest an upper tidal-flat environment during the
352	formation period of layer 4.
353	Layers 3 (Shang to Zhou dynasty) and 2 (Tang to Song dynasty). The radiocarbon
354	age of charcoal is 1395–1500 BCE at the bottom of this section, which together with
355	artefacts of Shang to Song dynasties, provides firm evidence that these two layers
356	were formed during the historical period. TOC/TN increased in layers 3 and 2, and
357	OC is dominated by freshwater algae and the POC contains a signal of terrestrial C_3
358	plants (Fig. 4B). There are some marine dinoflagellate cysts (476 cysts g^{-1} dw) in the
359	base of layer 3, indicating a saltmarsh environment at the beginning of Shang dynasty
360	and a freshwater environment thereafter.
361	From the results of these multiproxy analyses of organic carbon sources, marine
362	microfossils and the occurrence of human cultural layers, we speculate that humans
363	settled at the Yushan site during periods when coastal freshwater marsh or saltmarsh
364	environment prevailed over the last ~6500 years. However, such settlement was
365	interrupted by two marine intrusion events, corresponding to the interruption of the
366	Hemudu and termination of the Liangzhu culture during ~4310–4020 BCE and 2575–
367	1450 BCE, respectively. Note that the later event was characterized by a major storm
368	event at its beginning, a storm that was strong enough to erode away the peat layer
369	and form a sand ridge.

4.2 Ages of the storm event and the terminal of Liangzhu culture

372	The OSL dating of quartz grains gives a direct age of 2575 ± 240 BCE for the
373	sand ridge. However, a narrower age span is necessary to discuss the linkage between
374	coastal flooding and the Neolithic culture. As the top of the peat unit at Yushan was
375	eroded away by the storm in many units (Figs. 2, 3) or possibly lost due to human
376	land use such as building an artificial platform (Table 1), we are unable to determine
377	directly the age when the coastal marsh was inundated and buried by the marine
378	sediments. We therefore compared the ages obtained from the rice field profiles at the
379	Tianluoshan (TLS) site, which is only ~20 km away from Yushan and is located
380	inland and surrounded by highland (Fig. 1B). At the TLS site, the top of the
381	corresponding peat bed formed during the Liangzhu period is non-erosively preserved
382	and dateable (Zheng et al., 2012). This implies that this site was protected from the
383	storm erosion and only drowned by the sea water. Thus, the buried peat top should
384	represent the original depositional surface of the coastal marsh. Two samples of seeds
385	from different trenches from the peat top of the TLS site resulted in the same age of
386	2540 BCE (¹⁴ C ages of 4015 \pm 45 and 4020 \pm 40 yr BP, respectively, Table 2). This
387	corresponds very well with the Yushan profile, both in terms of the stratigraphy and
388	the age of the marine inundation as dated by OSL (2575 BCE; Table 3). From these
389	two reliable and independent lines of chronological evidence which give a range of
390	2540–2575 BCE for the central age, we therefore consider that the most likely date of
391	the storm to be ~2560 \pm 100 BCE (the range of \pm 100 years was decided according to
392	the error of radiocarbon dating).

393 The Liangzhu people abandoned the Yushan site immediately after the storm event. Our compilation of radiocarbon ages of other sites across the south Yangtze 394 395 coastal plains further demonstrates that the terminal age of the Liangzhu culture was at approximately 2500 BCE (Fig. 5), when the Liangzhu people abandoned their state 396 capital complex (Zhang et al., 2015; Wang et al., 2017). Thus, the Liangzhu culture 397 ended only decades after the Yushan storm. The subsequent Qianshanyang and 398 Guangfulin cultures both lasted only for ~300 years, much shorter than the Liangzhu 399 culture (Fig. 5). 400

401

402 *4.3 Relative sea-level change from 4500 to 1500 BCE*

The deposits of saltmarsh and freshwater marsh of layers 7 and 6, respectively 403 404 imply that relative sea level dropped from -0.78 ± 0.22 m to -1.10 ± 0.25 m during the period from late Hemudu (3945–4170 BCE) to Liangzhu culture (2635–2880 405 BCE; Table 4; Fig. 6). We further interpolated an indicator of the peat top from the 406 west part of unit T0513, where weak erosion of the peat occurred, and ~30-cm thick 407 peat exists above the Holocene base (Fig. 2B). An original ~40-cm thickness of the 408 peat was estimated using the highest estimation of percentage (30%) of peat 409 compaction with an overburden of 1 m (van Asselen et al., 2011). Thus, the original 410 altitude of the peat top and the relative sea level was estimated to be at 1.16 m and 411 -0.70 ± 0.25 m, respectively (Table 4) when the storm occurred at 2560 ± 100 BCE. 412 The upper tidal flat facies of layer 4 indicates a high relative sea-level stand at $\sim 0.25 \pm$ 413 0.27 m at 2335–2495 BCE while the saltmarsh sediments of layer 3 indicate the sea 414

415	level was at $\sim 0.05 \pm 0.22$ m at 1395–1500 BCE. These data suggest an acceleration in
416	relative sea-level rise during the late stage of Liangzhu culture and a slight drop of the
417	sea level from ~2440 BCE. In addition, a rapid relative sea-level rise also occurred
418	from -1.49 ± 0.25 m to -0.45 ± 0.27 m from 4440–4540 BCE to 4260–4360 BCE,
419	inferred from the basal peat layer 9 and the marine-originated homogenous mud layer
420	8, respectively (Figs 2B, 4; Table 4). Similarly, this earlier acceleration of sea-level
421	rise occurred during the cultural interruption period between early to mid-Hemudu
422	and late Hemudu cultures (Fig. 6).
423	
424	5. Discussion
425	5.1 Flooding signatures across the south Yangtze coast
426	From these multiproxy and independent lines of evidence, we speculate that a

major coastal storm occurred at $\sim 2560 \pm 100$ BCE, which not only overwhelmed the 427 Yushan site directly, but was strong enough to erode away ~30-cm thick peat (Fig. 3). 428 This storm was followed by long-lasting marine inundation and the development of a 429 brackish tidal flat owing to relative sea-level rise, which led to human abandonment 430 of the area for ~1000 years until ~1625 BCE (Figs. 4, 6). The brackish wetland 431 ecosystem was characterised by low primary productivity, bacterial-dominated OC 432 and low terrestrial OC input, probably with limited biomass production, and was 433 unlikely to support significant human populations during the high sea-level stand of 434 2440–1625 BCE (Fig. 4). Although the wetland had become less saline by the time of 435 the subsequent Shang, Zhou, Tang and Song dynasties (layers 2 and 3), we infer from 436

the geochemical data (especially TOC% and TOC/TN) that primary productivity wasfar lower than it had been during the Liangzhu period (Fig. 4A).

439 Comparisons with the data available from previous studies of the south Yangtze coast (Fig. 6; Table 5) reveal the extent of this coastal flooding in response to the 440 accelerated sea-level rise during the later stages of Neolithic culture. As expected, a 441 strong saline event occurred at ~2540 BCE at sites within the Yaojiang plain (cf. at 442 TSL; Zheng et al., 2012), but it is also clearly seen 140 km west (at KHQ; ZPICRA, 443 2004; Fig. 6). A slight increase in salinity (reflected by increase in the abundance of 444 445 saline Chenopodiaceae) was also seen at the Liangzhu site close to the state capital (Table 5). The marine flooding likely did not extend across the Taihu Plain, which 446 also had some protection from substantial chenier ridges to the east (Fig. 1), but there 447 is evidence of a salinization event at the same time at sites ZX-1, TMC (Fig. 6) and 448 Guangfulin (Table 5) close to the shoreline. At most other sites, an increase in local 449 water level was reported at the end of the Liangzhu period (Table 5), implying inland 450 451 flooding from storm rainfall or waterlogging due to sea-level rise.

452

453 *5.2 Causes of the mid-Holocene coastal flooding*

Our reconstruction of relative sea level demonstrated a rapid rise (~0.95 m in ~120 years; Table 4) at the final stage of the Liangzhu culture (Fig. 6). The amplitude of this rise could be slightly overestimated because of the uncertainty in the height of the top of the peat and the underestimation of its compaction. We also did not consider the enlargement of the tidal range because previous simulations
demonstrated little change in the amplitude of the M₂ tide in the south east Hangzhou
Bay during the middle to late Holocene (Uehara et al., 2002). As previous studies
further suggest no major deposition or shoreline advance during the middle Holocene
along the Hangzhou Bay (Yan et al., 1989; Gao and Collins, 2014; Zhang et al.,
2015), we infer no significant change in tidal levels after the Yushan storm ~4500
years ago.

465 This accelerated relative sea-level rise is consistent with sea level records from 466 other regions around the world, and adds to evidence that this rise may reflect a global signal, rather than resulting from local processes. For example, on the coast of 467 Peninsular Malaysia, the relative sea level dropped slightly from 3500 to 2500 BCE 468 469 and then rose suddenly by ~1-3 m from ~2500 to 2100 BCE (Tjia, 1996; Horton et al., 2005). Rapid relative sea level rise between 2650 and 2350 BCE was also reported 470 from the coast of north-eastern Brazil (~1 m; Suguio et al., 2013) and the northern 471 472 Gulf of Mexico (Balsillie and Donoghue, 2011). In the mid-Pacific Ocean, microatolls record a relative sea level rise beginning at ~2500 BCE, following slightly declining 473 or stable levels over the previous ~1500 years (Woodroffe et al., 2012). The eustatic 474 sea level curve reconstructed from Red Sea corals shows that sea level began to rise at 475 ~2300 BCE, following stable or declining levels over the previous ~900 years (Siddall 476 et al., 2003). These data imply a small but significant acceleration in global sea level 477 478 rise in the middle of the third millennium BCE.

479	In addition, Meltzner et al. (2017) reported a half-meter sea level excursion on
480	centennial timescales between 6850 and 6500 cal yr BP from the microatolls of the
481	Sunda Shelf, which indicates that the regional relative sea-level change could be a
482	highly fluctuating pattern along the west coast of the Pacific Ocean. We infer that the
483	rapid rise of relative sea level at Yushan ~4500 years ago, together with the earlier
484	rise \sim 6300 years ago (Fig. 6) have similarity with the records in the microatolls of the
485	Sunda Shelf. Furthermore, the record of the Asian summer monsoon shows a small
486	peak in activity from ~2600–2450 BCE (Fig. 6; Wang et al., 2005). A comparison of
487	values between the Dongge Cave δ^{18} O, a proxy for the relative strength of the Asian
488	summer monsoon, and atmospheric Δ^{14} C, a proxy for solar activity, revealed that the
489	monsoon peak coincided with the peak in solar irradiance from ~ 2600 to 2400 BCE
490	(Stuiver, 1998; Wang et al., 2005). From these data, we infer that this small monsoon
491	intensity peak was driven by increasing solar activity and hence was a climate-
492	warming event on a centennial timescale. Therefore, we suggest that accelerated
493	global sea-level rise occurred against a backdrop of climate warming during the late
494	stage of the Liangzhu culture.
495	Previous studies suggested that a key feature of accelerated rising sea level is that
496	the return periods of flood events decrease as the sea level increases (Sweet et al.,
497	2014; Tessler et al., 2015). We thus suggest that the catastrophic storm at Yushan
498	marked the beginning of a period of frequent flooding across the Yangtze coast, likely

499 including other major coastal and inland flooding events, as supported by evidence of

flood deposits in the coastal lowland of Hangzhou Bay and increasing freshwaterlevels across the Taihu Plain (Fig. 6; Table 5).

502

503 5.3 Impacts of the coastal flooding on the Liangzhu human society

504 We argue that perhaps only over a few decades, the combined effect of a series of extreme events and flooding, such as the Yushan inundation, could have 505 overwhelmed even a politically advanced, technologically capable and well-organised 506 prehistoric society such as the Liangzhu. Frequent extreme events and flooding would 507 508 have had profound impacts, both immediate and longer-term. The coastal storm recorded at Yushan at 2560 BCE and associated flooding (including inland river 509 510 flooding from storm rainfall) would have destroyed settlements and infrastructure 511 across the region, as seen in the archaeological record at Yushan (Fig. 3). In the Yaojiang Plain, the immediate aftermath of marine flooding would have killed 512 freshwater wetland plant communities that could not tolerate higher salinity and thus 513 514 ended rice cultivation (Zheng et al., 2012); low net biomass production under marine/brackish conditions (Fig. 4A) would be unlikely to support significant human 515 populations. At the head of Hangzhou Bay, coastal flooding also inundated the late-516 Liangzhu rice paddies such as at Maoshan (~30 km away from the Mojiaoshan, Fig. 517 1), notwithstanding it was designed with artificial ditches to facilitate water 518 management (Zhuang et al., 2014). The political centre of Mojiaoshan was not only 519 520 threatened directly by the salt intrusion and frequent flooding (Liu and Chen, 2012;

521 Zhuang et al., 2014; Table 4), but also could have learned lessons from the flooding of
522 inundated sites in the Yaojiang Plain.

523	Furthermore, although societal and demographic recovery from a single extreme
524	event could have happened after the Yushan storm (e.g. during freshening seen in the
525	upper section of layer 5; Fig. 4A), frequent flooding would have made this much more
526	difficult, for example by ruining stored rice seeds or from persistent and widespread
527	crop failure (Stone, 2009). This would quickly result in a shortage of surplus
528	production needed to support the political centre, and the large number of artisanal
529	workers not employed in food production, such as jade workers (Liu and Chen, 2012).
530	It is possible that the Liangzhu ruling political elite could have moved the state capital
531	away from the coastal lowland as an adaptive strategy to mitigate the impacts of rising
532	sea level and increasing flooding, potentially explaining the appearance of the
533	subsequent, but less organised and less developed (yet culturally related),
534	Qianshanyang culture. Owing to its profound impacts on the landscape and people,
535	this period of flooding, including the Yushan storm at 2560 BCE, may even have
536	contributed to the ancient oral flood traditions in the Lower Yangtze, forming the
537	cultural setting for the legend of China's Great Flood more than 4000 years ago
538	(Lewis, 2006).

539

540 6. Conclusions

541 From the sedimentary record at the Yushan archaeological site, and combined 542 evidence from other sites in the south Yangtze coastal plain, we conclude that major

543	coastal flooding occurred at the late stage of the Liangzhu culture. This flooding was
544	characterized by extreme events, and was caused by short-term but significant
545	acceleration in sea-level rise, which was possibly linked to a climate warming event
546	on a centennial timescale. We suggest that the frequent extreme events and
547	catastrophic flooding during warming climate phases are controlling factors in
548	explaining Neolithic cultural transitions in the middle Holocene in the Yangtze
549	coastal lowland, including the sudden and perplexing demise of the technologically
550	advanced Liangzhu culture. Our finding of this catastrophic coastal flooding at the
551	middle of third millennium BCE provides an analogue for flood risk, owing to the
552	predicted high rate of sea level rise at the end of 21st century (Nerem et al., 2018) and
553	urgently calls for mitigation strategies to be put in place to protect vulnerable coastal
554	populations worldwide against a similar scenario of abrupt sea level rise in the near
555	future.
556	
557	Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 41576042). We are grateful to two anonymous reviewers for their helpful comments.

561

562 **References**

Atahan, P., Itzstein-Davey, F., Taylor, D., Dodson, J., Qin, J., Zheng, H., Brooks, A.,
2008. Holocene-aged sedimentary records of environmental changes and early

- agriculture in the lower Yangtze, China. Quaternary Science Reviews 27, 556–570,
 doi:10.1016/j.quascirev.2007.11.003.
- Balsillie, J.H., Donoghue, J.F., 2011. Northern Gulf of Mexico sea-level history for
 the past 20,000 years. In: Buster, N.A., and Holmes, C.W., eds, Gulf of Mexico
- 569 Origin, Waters, and Biota: Volume 3, Geology. Texas A&M University Press,
- 570 Texas, pp 53–72.
- 571 Bøtter-Jensen, L., Andersen, C.E., Duller, G.A.T., and Murray, A.S., 2003.
- 572 Developments in radiation, stimulation and observation facilities in luminescence
- 573 measurements. Radiation Measurements 37, 535–541, doi: 10.1016/S1350-
- 574 4487(03)00020-9.
- 575 Chen, J., 2002. The Neolithic culture and environment in the Yangtze delta plain.
- 576 PhD. Thesis, Shanghai, East China Normal University, 109 p (in Chinese).
- 577 Chen, J.Y., Zhu, H.F., Dong, Y.F., Sun, J.M., 1985. Development of the Changjiang
 578 estuary and its submerged delta. Continental Shelf Research 4, 47–56.
- 579 Chen, Z., Wang, Z., Schneiderman, J., Cai, Y., 2005. Holocene climate fluctuations
- on millennium scale in the Yangtze delta of eastern China: implications and
- response. The Holocene 15, 917–926.
- 582 Duller, G.A.T., 2008. Single-grain optical dating of Quaternary sediments: why
- aliquot size matters in luminescence dating. Boreas 37, 589–612, doi:
- 584 10.1111/j.1502-3885.2008.00051.x.
- 585 Durcan, J.A., King, G.E., Duller, G.A.T., 2015. DRAC: Dose rate and age calculation
- for trapped charge dating. Quaternary Geochronology 28, 54–61.
- 587 Gao, S., Collins, M.B., 2014. Holocene sedimentary systems on continental shelves.
- 588 Marine Geology 352, 268–294.

- Giosan, L., Syvitski, J., Constantinescu, S., Day, J., 2014. Climate change: protect the
 world's deltas. Nature 516, 31–33.
- He, C.Q., Song, Z.C., Zhu, Y.H., 2009. Dinoflagellate fossil of China. Science Press,
- 592 Beijing (in Chinese).
- 593 Hori, K., Saito, Y., Zhao, Q., Cheng, X., Wang, P., Sato, Y., Li, C., 2001.
- Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary
 during the last transgression. Marine Geology 177, 331–351.
- Horton, B.P., Gibbard, P.L., Milne, G.M., Morley, R.J., Purintavaragul, C., Stargardt,
- 597 J.M., 2005. Holocene sea levels and palaeoenvironments, Malay-Thai Peninsula,
- southeast Asia. The Holocene 15, 1199–1213.
- Innes, J.B., Zong, Y., Wang, Z., and Chen, Z., 2014. Climatic and palaeoecological
- 600 changes during the mid- to Late Holocene transition in eastern China: high-
- resolution pollen and non-pollen palynomorph analysis at Pingwang, Yangtze
- 602 coastal lowlands. Quaternary Science Reviews 99, 164–175, doi:
- 603 10.1016/j.quascirev.2014.06.013.
- Itzstein-Davey, F., Atahan, P., Dodson, J., Taylor, D., Zheng, H., 2007. Environmental
- and cultural changes during the terminal Neolithic: Qingpu, Yangtze delta, eastern
- 606 China. Holocene 17, 875–887, doi:10.1016/j.quascirev.2007.11.003.
- 607 Kopp, R.E., Kemp, A.C., Bittermann, K., Horton, B.P., Donnelly, J.P., Gehrels, W.R.,
- Hay, C.C., Mitrovica, J.X., Morrow, E.D., and Rahmstorf, S., 2016. Temperature-
- driven global sea-level variability in the Common Era. Proc. Natl. Acad. Sci.
- 610 USA 113, E1434–E1441, doi: 10.1073/pnas.1517056113.

- Lamb, A.L., Wilson, G.P., and Leng, M.J., 2006. A review of coastal palaeoclimate
- and relative sea-level reconstructions using δ^{13} C and C/N ratios in organic
- 613 material. Earth-Science Reviews 75, 29–57, doi: 10.1016/j.earscirev.2005.10.003.
- Lawler, A., 2009. Beyond the Yellow River: how China became China. Science 325,
- 615 930–935, doi: 10.1126/science.325_930.
- Lewis, M.E., 2006. The Flood Myths of Early China. New York, State University of
 New York Press, 256 p.
- Li, C., Wang, P., Sun, H., Zhang, J., Fan, D., Deng, B., 2002. Late Quaternary incised-
- valley fill of the Yangtze delta (China): its stratigraphic framework and evolution.
 Sedimentary Geology 152, 133–158.
- Li, Y., Wu, J., Hou, S., Shi, C., Mo, D., Liu, B., Zhou, L., 2010. Palaeoecological
- 622 records of environmental change and cultural development from the Liangzhu and
- 623 Qujialing archaeological sites in the middle and lower reaches of the Yangtze River.
- 624 Quaternary International 227, 29–37, doi:10.1016/j.quaint.2010.05.015.
- Liu, L., Chen, X., 2012. The Archaeology of China: From the Late Paleolithic to the
- Early Bronze Age (Cambridge World Archaeology). Cambridge, Cambridge
- 627 University Press, 475 p.
- Liu, C., Sui, J., He, Y., Hirshfield, F., 2013. Changes in runoff and sediment load
- from major Chinese rivers to the Pacific Ocean over the period 1955–2010.
- 630 International Journal of Sediment Research 28, 486–495.
- 631 Liu, B., Wang, N., Chen, M., Wu, X., Mo, D., Liu, J., Xu, S., Zhuang, Y., 2017.
- Earliest hydraulic enterprise in China, 5,100 years ago. PNAS 114, 13637–13642.

- Mao, L.M., Wang, W.M., Shu, J.W., Yang, X.L., 2011. Holocene spores and
- 634 microscopic algae from the Yangtze delta, east China Acta palaeontologica
- 635 Sinica 50, 154–165 (in Chinese, with English abstract).
- 636 Meltzner, A.J., Switzer, A.D., Horton, B.P., Ashe, E., Qiu, Q., Hill, D.F., Bradley,
- 637 S.L., Kopp, R.E., Hill, E.M., Majewski, J.M., Natawidjaja, D.H., and Suwargadi,
- B.W., 2017. Half-metre sea-level fluctuations on centennial timescales from mid-
- Holocene corals of Southeast Asia. Nature Communications 8, 14387, doi:
- 640 10.1038/ncomms14387.
- Moore, P.D., Webb, J.A., Collinson, M.E., 1990. Pollen analysis. Blackwell Scientific
 Publications, Oxford.
- 643 Nerem, R.S., Beckley, B.D., Fasullo, J.T., Hamlington, B.D., Masters, D., Mitchum,
- 644 G.T., 2018. Climate-change-driven accelerated sea-level rise detected in the

altimeter era. Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1717312115.

- Nicholls, R.J., and Cazenave, A., 2010. Sea-level rise and its impact on coastal zones.
 Science 328, 1517–1520. doi: 10.1126/science.1185782.
- 648 Qin, L., 2013. The Liangzhu Culture. In: Underhill, A.P. (ed.), A Companion to
- 649 Chinese Archaeology. Wiley-Blackwell, pp 574–598.
- 650 Qin, J., Taylor, D., Atahan, P., Zhang, X., Wu, G., Dodson, J., Zheng, H., Itzstein-

Davey, F., 2011. Neolithic agriculture, freshwater resources and rapid

- environmental changes on the lower Yangtze, China. Quaternary Research 75,
- 653 55–65, doi: 10.1016/j.yqres.2010.07.014.
- Renberg, I., 1990. A procedure for preparing large sets of diatom slides from
- sediment cores. Journal of Paleolimnology 4, 87–90.

656	Ryves, D.B., Clarke, A.L., Appleby, P.G., Amsinck, S.L., Jeppesen, E., Landkildehus,
657	F., and Anderson, N.J., 2004. Reconstructing the salinity and environment of the
658	Limfjord and Vejlerne Nature Reserve, Denmark, using a diatom model for
659	brackish lakes and fjords. Canadian Journal of Fisheries & Aquatic Sciences 61,
660	1988–2006, doi: 10.1139/F04-127.
661	Shanghai Museum, 2002. The excavated report on the Neolithic site GUANG FU LIN,
662	Songjiang, Shanghai during 1999-2000. KAO GU (10), 31-48 (in Chinese).
663	Shennan, I., Long, A.J., Horton, B.P., 2015. Handbook of sea-level research. John
664	Wiley &Sons, Ltd.
665	Siddall, M., Rohling, E.J., Almogi-Labin, A., Hemleben, Ch., Meischner, D.,
666	Schmelzer, I., and Smeed, D.A., 2003. Sea-level fluctuations during the last
667	glacial cycle. Nature 423, 853-858, doi: 10.1038/nature01690.
668	Stanley, D.J., Chen, Z., and Song, J., 1999. Inundation, sea-level rise and transition
669	from Neolithic to Bronze age cultures, Yangtze delta, China. Geoarchaeology 14,
670	15–26.
671	Stone, R., 2009. One year after a devastating cyclone, a bitter harvest. Science 324,
672	715, doi: 10.1126/science.324_715.

- 673 Stuiver, M., 1998. INTCAL 98 radiocarbon age calibration, 24,000-0 cal BP.
- 674 Radiocarbon 40, 1041–1083.
- 675 Stuiver, M., Reimer, P.J., Reimer, R., 2015. CALIB: Radiocarbon Calibration:
- 676 http://calib.qub.ac.uk/calib/(September 2015).
- 677 Sun, D., Gagan, M.K., Cheng, H., Scott-Gagan, H., Dykoski, C.A., Edwards, R.L.,
- and Su, R., 2005. Seasonal and interannual variability of the Mid-Holocene East

- Asian monsoon in coral δ^{18} O records from the South China Sea. Earth and
- 680 Planetary Science Letters 237, 69–84.
- 681 Suguio, K., Barreto, A.M.F., de Oliveira, P.E., Bezerra, F.H.R., and Vilela, M.C.S.H.,
- 682 2013. Indicators of Holocene sea level changes along the coast of the states of
- 683 Pernambuco and Paraíba, Brazil. Geologia USP 13, 141–152, doi:
- 684 10.5327/Z1519-874X201300040008.
- 685 Sweet, W., Park, J., Marra, J., Zervas, C., and Gill, S., 2014. Sea level rise and

nuisance flood frequency changes around the United States. NOAA Technical
Report NOS CO-OPS 073, 58 p.

- 688 Syvitski, J.P.M., Kettner, A.J., Overeem, I., Hutton, E.W.H., Hannon, M.T.,
- Brakenridge, G.R., Day, J., Vorosmarty, C., Saito, Y., Giosan, L., and Nicholls,
- 690 R.J., 2009. Sinking deltas due to human activities. Nature Geoscience 2, 681–686.
- Tang, L.Y., Mao, L.M., Li, X.M., 2013. Palaeoecological and palaeoenvironmental
- significance of some important spores and micro-algae in Quaternary deposits.
- 693 Chinese Science Bulletin 58, 3125–3139.
- 694 Tessler, Z.D., Vörösmarty, C.J., Grossberg, M., Gladkova, I., Aizenman, H., Syvitski,
- J.P.M., and Foufoula-Georgiou, E., 2015. Profiling risk and sustainability in
- coastal deltas of the world. Science 349, 638–643, doi: 10.1126/science.aab3574.
- Tjia, H.D., 1996. Sea-level changes in the tectonically stable Malay-Thai Peninsular.
 Quaternary International 31, 95–101.
- 699 Uehara, K., Saito, Y., Hori, K., 2002. Paleotidal regime in the Changjiang (Yangtze)
- Estuary, the East China Sea, and the Yellow Sea at 6 ka and 10 ka estimated from
- a numerical model. Marine Geology 183, 179–192.

702	van Asselen, S., Karssenberg, D., Stouthamer, E., 2011. Contribution of peat
703	compaction to relative sea-level rise within Holocene deltas. Geophysics
704	Research Letters 38, L24401, doi:10.1029/2011GL049835.
705	Wang, X., Mo, D., Li, C., Yu, SY., Xue, B., Liu, B., Wang, H., and Shi, C., 2017.
706	Environmental changes and human activities at a fortified site of the Liangzhu
707	culture in eastern China: evidence from pollen and charcoal records. Quaternary
708	International 438, 189–197, doi: 10.1016/j.quaint.2017.05.001.
709	Wang, Y., Cheng, H., Edwards, R.L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M.J.,
710	Dykoski, C.A., and Li, X., 2005. The Holocene Asian monsoon: links to solar
711	changes and North Atlantic climate. Science 308, 854-857, doi:
712	10.1126/science.1106296.
713	Wang, Z., Li, M., Zhang, R., Zhuang, C., Liu, Y., Saito, Y., Xie, J., Zhao, B., 2011.
714	Impacts of human activity on the late-Holocene development of the subaqueous
715	Yangtze delta, China, as shown by magnetic properties and sediment
716	accumulation rates. The Holocene 21, 393–407.
717	Wang, Z., Zhuang, C., Saito, Y., Chen, J., Zhan, Q., and Wang, X., 2012. Early mid-
718	Holocene sea-level change and coastal environmental response on the southern
719	Yangtze delta plain, China: implications for the rise of Neolithic culture.
720	Quaternary Science Reviews 35, 51-62, doi: 10.1016/j.quascirev.2012.01.005.
721	Wang, Z., Zhan, Q., Long, H., Saito, Y., Gao, X., Wu, X., Li, L., Zhao, Y., 2013.
722	Early to mid-Holocene rapid sea-level rise and coastal response on the southern
723	Yangtze delta plain, China. Journal of Quaternary Science 28, 659-672.

- Woodroffe, C.D., McGregor, H.V., Lambeck, K., Smithers, S.G., and Fink, D., 2012.
- Mid-Pacific microatolls record sea-level stability over the past 5000 yr. Geology
 40, 951–954, doi: 10.1130/G33344.1.
- Woodruff, J.D., Irish, J.L., and Camargo, S.J., 2013. Coastal flooding by tropical
- cyclones and sea-level rise. Nature 504, 44–52, doi: 10.1038/nature12855.
- Yan, Q., Xu, S., and Shao, X., 1989. Holocene cheniers in the Yangtze Delta, China.
 Marine Geology 90, 337–343.
- 731 Zhan, Q., Wang, Z., Xie, Y., Xie, J., He, Z., 2011. Assessing C/N and δ^{13} C as
- indicators of Holocene sea level and freshwater discharge changes in the
 subaqueous Yangtze delta, China. The Holocene 22, 697–704.
- Zhang, X., Dalrymple, R.W., Yang, S.-Y., Lin, C.-M., Wang, P., 2015. Provenance of
- Holocene sediments in the outer part of the paleo-Qiantang River estuary, China.
 Marine Geology 366, 1–15.
- 737 Zhang, X., Huang, D., Deng, H., Snape, C., Meredith, W., Zhao, Y., Du, Y., Chen, X.,
- and Sun, Y., 2015. Radiocarbon dating of charcoal from the Bianjiashan site in
- Hangzhou: New evidence for the lower age limit of the Liangzhu Culture.
- 740 Quaternary Geochronology 30, 9–17, doi: 10.1016/j.quageo.2015.07.001.
- 741 Zhao, X., 1998. Origin of rice paddy cultivation at the Hemudu site. Agricultural
- Archaeology 1, 131–137. Scanned by Sui, K.; form. by Leir, G.; transl./ed. by
- 743 Gordon, B., Wong, E., Craig, A..
- Zheng, Y., Sun, G., Qin, L., Li, C., Wu, X., and Chen, X., 2009. Rice fields and
- modes of rice cultivation between 5000 and 2500 BC in east China. Journal of
- 746 Archaeological Science 36, 2609–2616, doi: 10.1016/j.jas.2009.09.026.

- 747 Zheng, Y.F., Sun, G.P., and Chen, X.G., 2012. Response of rice cultivation to
- fluctuating sea level during the Mid-Holocene. Chinese Science Bulletin 57, 370–
 378, doi: 10.1007/s11434-011-4786-3.
- Zhuang, Y., Ding, P., and French, C., 2014. Water management and agricultural
- 751 intensification of rice farming at the late-Neolithic site of Maoshan, Lower
- 752 Yangtze River, China. The Holocene 24, 531–545, doi:
- 753 10.1177/0959683614522310.
- Zong, Y., Chen, Z., Innes, J.B., Chen, C., Wang, Z., and Wang, H., 2007. Fire and

flood management of coastal swamp enabled first rice paddy cultivation in east
China. Nature 449, 459–462, doi: 10.1038/nature06135.

- 757 Zong, Y., Innes, J.B., Wang, Z., and Chen, Z., 2011. Mid-Holocene coastal hydrology
- and salinity changes in the east Taihu area of the lower Yangtze wetlands, China.
 Quaternary Research 76, 69–82, doi:10.1016/j.yqres.2011.03.005.
- Zong, Y., Innes, J.B., Wang, Z., and Chen, Z., 2012. Environmental change and
- 761 Neolithic settlement movement in the lower Yangtze wetlands of China. The
- 762 Holocene 22, 659–673, doi: 10.1177/0959683611414933.
- 763 ZPICRA, 2004. KUA HU QIAO-Archaeological Report of Puyang River Valley I.
- 764 Beijing, WEN WU Press, 379 p (in Chinese).
- 765 ZPICRA, Huzhou Museum, 2014. Qianshanyang: a report on the third and fourth
- excavations of the site. Beijing, WEN WU Press, 738 p (in Chinese).
- 767

768

769 **Table headings**

Table 1 A summary of the archaeological sequence at Yushan site (Figs 2, 3).

	771	Table 2 AMS	¹⁴ C ages	and their	calibrations	for the	Yushan and	Tianluosha	an sites.
--	-----	-------------	----------------------	-----------	--------------	---------	------------	------------	-----------

- 772 **Table 3** Single-grain OSL age for the sand ridge sample from the Yushan site
- together with supporting dose rate and equivalent dose (D_e) data.
- 774 Table 4 Reconstruction of relative sea levels using sea-level indicators obtained from
- units T0410 and T0513 (Fig. 2B, C). Sedimentary facies was determined according to
- the lithology, organic carbon, diatom assemblage and dinoflagellate cysts. Tidal levels
- were collected from the Zhenhai gauge station (Fig. 1; 1958–1980). MSHW, 1.61 m;

MHW, 1.17 m; MNHW, 0.63 m. All heights are given with respect to current mean

- sea level (Yellow Sea datum). Abbreviations: MSHW, mean spring high water;
- 780 MHW, mean high water; MNHW, mean neap high water.
- **Table 5** Sediment profiles with high-resolution AMS ¹⁴C ages from the Taihu and
- 782 Yaojiang Plains and head of the Hangzhou Bay, East China coast. Locations of these
- 783 profiles are indicated in Fig. S2.
- 784

785 Figure legends

786 Figure 1 Location maps. (A) East Asia and the location of the study area. (B) The south Yangtze coastal plain, showing the locations of the Liangzhu sites and all sites 787 for which radiocarbon dates for the Liangzhu and post-Liangzhu cultural layers were 788 789 available. These sites are numbered in sequence according to their distance from the 790 Yushan site (Table S1). Note that the Liangzhu settlements are distributed mainly on the Taihu Plain of the southern Yangtze Delta plain and the Yaojiang Plain on the 791 south east bank of Hangzhou Bay. (C) The flooding to a depth of >0.5 m across most 792 of the Yaojiang Plain caused by Typhoon Fitow (the strongest typhoon to make 793

794 landfall in China for over 60 years), October 2013 (data source: Ningbo gauge station, 2013. http://www.nbswz.com.cn/Html/201405/26/11669.html). (D-F) Typical 795 artefacts of the Liangzhu culture discovered from the Yushan site, now deposited in 796 797 Ningbo Municipal Institute of Cultural Relics and Archaeology. (D) Stone cutter (Shi Dao); (E) stone woodworking tool (Youduan Shi Beng); (F) black pottery two-lugged 798 necked jar (Shuangbi Hu), with some remains of black slip. The maps were generated 799 800 with the ArcGis 10.1 software (www.esrichina.com.cn) using the topographic dataset provided by the International Scientific & Technical Data Mirror Site, Computer 801 802 Network Information Centre, Chinese Academy of Sciences (http://www.gscloud.cn). Figure 2 (A). Aerial photo of the Yushan site during excavation. (B) Photo of the 803 south wall of unit T0513. Numbers represent the cultural layers. Note layers 8 and 9 804 805 pinch out and disappear westward due to the basal topography, making layer 6 the 806 Holocene basal peat in some sections. (C) Photo of the west wall of unit T0410. Numbers represent the cultural layers. The data set of altitude and radiocarbon age are 807 808 presented for each sea-level indicator in (B) and (C). Layers 8 and 9 also pinch out and disappear northward due to the basal topography, making layer 7 the Holocene 809 basal sediments. Elevation of the Holocene bases in two units were measured by a 810 total station. White arrows with elevation and calibrated ages (BCE) represent data 811 812 used for reconstruction of relative sea level. Numbers of cultural layers: 2, Tang to 813 Song dynasties; 3, Shang to Zhou dynasties; 4–5, natural deposits; 6a–6b, Liangzhu 814 period; 7, late Hemudu period, missing in these units; 8, natural deposits; 9, early to middle Hemudu period; 10, pre-Hemudu natural deposits. 815

Figure 3 Photographs of strata at Yushan. (A) Excavation unit T0513, showing the
sediments deposited since the pre-Hemudu period and the erosional surface above the

818 peat layer of the Liangzhu period. (B–C) Tree stumps on the tops of the peat layers in

819 T0213 and T0214. (**D**) Sand ridge in T0415. (**E**–**F**) Sand ridge in T0513.

820 Figure 4 Environmental change and human responses at Yushan. (A)

- 821 Stratigraphic patterns of total nitrogen (TN), total organic carbon (TOC), TOC/TN,
- bulk organic carbon stable isotopic composition (δ^{13} C), dinoflagellate cysts, diatoms
- 823 (N = none, F/B = freshwater/brackish; M = marine; detailed information in Table S4)
- and sedimentation rates (SR) in different cultural layers (2–10). The numbers used for
- the cultural layers are the same as in Fig. 3. Ages with stars (*) were calculated based
- 826 on sedimentation rates. (B) Discrimination of organic carbon sources based on
- 827 TOC/TN and δ^{13} C (adapted from Lamb et al., 2006).
- 828 Figure 5 Time span of the Liangzhu (Group 1), Qianshanyang (Group 2),

829 Guangfulin (Group 3) cultures and post-Liangzhu natural deposits in Yaojiang

830 plain (Group 4). Note the end of the Liangzhu culture is around 2500 BCE. Also

indicated is the OSL age of the storm sand at the top of the Liangzhu cultural layer

832 (boundary of layer 5/6a; Fig. 3). Site number ordered by distance from the Yushan

site (Fig. 1; Table S1). Samples dated by AMS ¹⁴C are indicated in red. Others were

834 dated by the radiometric method.

835 Figure 6 Comparison of the relative sea-level change and regional marine

836 flooding records on the south Yangtze coast from the Yaojiang and Taihu plains

837 and the head of Hangzhou Bay. In the sea-level curve, calibrated radiocarbon ages

838 are presented with error bars of 2σ ; horizontal error bars represent the indicative

- meaning (range of relative sea level) of each sea-level indicator. The interpolated data
- 840 point is calculated from the data set derived from the estimated storm age and original
- peat top (Table 4; see text for details). Sediment profiles are numbered as in Fig. S2
- 842 (with increasing distance from Yushan); data sources are given in Tables 4 and S2.

843	The oxygen isotopic record (δ^{18} O) of stalagmite DA from Dongge Cave (the cave
844	location is marked in Fig. 1A; Wang et al., 2005) denotes a short period of
845	strengthening, yet variable, Asian summer monsoon linked to the warming climate
846	(denoted by the red arrow) during the latter stages of the Liangzhu culture.
847	
848	
849	
850	
851	
852	
853	
854	
855	
856	
857	
858	
859	
860	

Table 1 A summary of the archaeological sequence at Yushan site (Figs 2, 3).

Cultural	Description of lithology	Archaeological finds	Cultural period
layer			
1	Cultivated layer.	None	Present-day
2	Yellowish earth.	Yue Kiln	Tang and Song
3	Dark grey or yellowish grey mud.	Pottery vessels, early proto-celadon, bronze ware, stone and wood	Shang and Zhou
		tools	
4	Yellowish grey mud with some very thin (<1 mm)	None	Cultural interruption
	laminations of silt and abundant root traces.		
5a	Grey homogeneous mud with an unconformity with the	None	Cultural interruption
	underlying layer 6.		
5b	Gravelly sand, sand or mixture of sand and mud.	Some fragments of Liangzhu artefacts.	Storm deposits
6	a, peat; b, peaty mud. On top of this peat layer, an	An artificial platform occurred at the edge of upland, containing	Liangzhu
	erosional surface occurred and tree stumps exist in many	pottery vessels, polished stone tools of axe, adze, plow, cutter,	
	units (Fig. 3A–C).	arrowhead, sickle and Mopan slab. Some artefacts were also found in	1
		the peaty mud and peat.	

7	Organic rich mud	Red pottery vessels, polished stone tools of axe, adze, chisel, arrow	Late Hemudu
		head and Mopan slab and jade.	
8	Grey homogeneous mud.	None	Cultural interruption
9	Dark grey peaty mud	Black pottery vessels, polished stone tools of axe and adze, bone awl	Early to middle Hemudu
		and remains of architecture.	
10	Yellowish grey or grey homogeneous mud	None	Natural deposition before
			settling

Cultural	Cultural	Dating	δ ¹³ C	Conventiona	al Cali	ibrated age		Laboratory
period	layer	material		age		(BCE)		Number
	(Fig. 3)		(‰)	aBP	2 sigma	Probability	Median	1
Shang	3	Charcoal	-25.2	3170 ± 30	1395–1500	1	1450	414776
None	4	Plant	-27.9	3940 ± 30	2335-2495	0.90	2440	414777
		fragments	5					
None	5	Plant	-25.5	4170 ± 30	2635–2880	1	2760	406454
		fragments	5					
Liangzhu	6a	Plant	-30.3	4170 ± 30	2635–2880	1	2760	406455
		fragments	5					
Liangzhu	6b	Organic	-27.6	4770 ± 30	3515-3640	0.98	3570	414778
		sediments	5					
Late	7a	Charcoal	-25.6	5210 ± 50	3945-4170	0.94	4020	414779
Hemudu								
None	8	Plant	NA	5470 ± 30	4260-4360	1	4310	406456
		fragments	5					
Early to	9	Charcoal	-26.3	5640 ± 30	4440-4540	0.83	4490	406457
mid-								
Hemudu								
End of the	_	Seeds	NA	4020 ± 40	2465–2635	0.98	2540	BA091045
Neolithic								
End of the	—	Seeds	NA	4015 ± 45	2455–2675	0.97	2540	BA07761
Neolithic								
	Cultural period Shang None None Liangzhu Liangzhu Liangzhu Late Hemudu None Early to mid- Hemudu End of the Neolithic End of the	CulturalCulturalperiodlayer(Fig. 3)Shang3None4None5Liangzhu6aLiangzhu6bLate7aHemudu7aNone8Early to9midHemudu-None5	CulturalCulturalDatingperiodlayermaterial(Fig. 3)(Fig. 3)Shang3CharcoalNone4PlantfragmentsfragmentsNone5PlantfragmentsfragmentsLiangzhu6aPlantLiangzhu6bOrganicLate7aCharcoalHemuduragmentsLate7aCharcoalHemuduragmentsEarly to9CharcoalmidSeedsNeolithic-SeedsNeolithic-Seeds	CulturalCulturalCulturalDating δ^{13} C orperiodlayermaterial(Fig. 3)(%)Shang3Charcoal -25.2None4Plant-27.9fragmentsfragmentsNone5Plant-25.5fragmentsfragmentsLiangzhu6aPlant-30.3fragmentsfragmentsLiangzhu6bOrganic-27.6sedimentssedimentsLate7aCharcoal -25.6HemuduNone8PlantNAfragmentsfragmentsEarly to9Charcoal -26.3midSeedsNANeolithic-SeedsNANeolithic-SeedsNA	CulturalCulturalDating δ^{13} C Conventional ageperiodlayermaterialage(Fig. 3)(%o)aBPShang3Charcoal -25.2 3170 ± 30 None4Plant -27.9 3940 ± 30 fragmentsfragmentsfragmentsNone5Plant -25.5 4170 ± 30 fragmentsfragmentsfragmentsLiangzhu6aPlant -30.3 4170 ± 30 fragmentsfragmentssedimentsLiangzhu6bOrganic -27.6 4770 ± 30 sedimentsfragmentsfragmentsLiangzhu6bOrganic -27.6 5210 ± 50 HemudusedimentsfragmentsLate7aCharcoal -25.6 5210 ± 50 HemudugCharcoal -26.3 5640 ± 30 mid-gCharcoal -26.3 5640 ± 30 mid-gCharcoal -26.3 5640 ± 30 mid-gSeedsNA 4020 ± 40 None 6 SeedsNA 4015 ± 45 Neolithic $-$ SeedsNA 4015 ± 45	CulturalCulturalDating δ^{13} C ConventionalCallperiodlayermaterialage(Fig. 3)(%)aBP2 sigmaShang3Charcoal -25.2 3170 ± 30 $1395-1500$ None4Plant -27.9 3940 ± 30 $2335-2495$ fragmentsfragmentsfragments $2635-2880$ None5Plant -25.5 4170 ± 30 $2635-2880$ fragmentsfragmentsfragments $2635-2880$ Liangzhu6aPlant -30.3 4170 ± 30 $2635-2880$ fragmentsfragments $2635-2880$ fragmentsLiangzhu6bOrganic -27.6 4770 ± 30 $3515-3640$ sediments 210 ± 30 $2635-2880$ fragmentsLiangzhu6bOrganic -27.6 4770 ± 30 $3515-3640$ hemudu $3945-4170$ fragments $3945-4170$ Hemudu 39 Charcoal -25.6 5210 ± 50 $3945-4170$ Hemudu 9 Charcoal -26.3 5640 ± 30 $4440-4540$ mid- 9 Charcoal -26.3 5640 ± 30 $4440-4540$ mid- 400 ± 40 $2465-2635$ NeolithicEarly to9Charcoal -26.3 5640 ± 40 $2465-2635$ Neolithic $-$ SeedsNA 4020 ± 40 $2465-2635$ Neolithic $-$ SeedsNA 4015 ± 45 $2455-2675$	Cultural Cultural Dating δ^{13} C Conventional Calibrated age period layer material age (BCE) (Fig. 3) (%) aBP 2 sigma Probability Shang 3 Charcoal -25.2 3170 ± 30 $1395-1500$ 1 None 4 Plant -27.9 3940 ± 30 $2335-2495$ 0.90 fragments naments 2 $2335-2495$ 0.90 fragments None 5 Plant -25.5 4170 ± 30 $2635-2880$ 1 fragments fragments 1 fragments 1 fragments 1 Liangzhu 6a Plant -30.3 4170 ± 30 $3515-3640$ 0.98 Late 7a Charcoal -25.6 5210 ± 50 $3945-4170$ 0.94 Hemudu None 8 Plant NA 5470 ± 30 $4260-4360$ 1 fragments Early to 9 Charcoal -26.3	Cultural Cultural Dating δ^{13} C Conventional Calibrated age period layer material age (BCE) (Fig. 3) (%o) aBP 2 sigma ProbabilityMediar Shang 3 Charcoal -25.2 3170 ± 30 $1395-1500$ 1 1450 None 4 Plant -27.9 3940 ± 30 $2335-2495$ 0.90 2440 fragments ifragments 0 $2635-2880$ 1 2760 fragments 1 -27.0 4170 ± 30 $2635-2880$ 1 2760 fragments 1 -76.0 4770 ± 30 $2635-2880$ 1 2760 fragments 1 -76.0 4770 ± 30 $3515-3640$ 0.98 3570 Laingzhu 6b Organic -27.6 4770 ± 30 $3515-3640$ 0.98 3570 sediments 1 tate 7a Charcoal -25.6 5210 ± 50 $3945-4170$ 0.94 <

863 Table 2 AMS ¹⁴C ages and their calibrations for the Yushan and Tianluoshan sites.

- 864 * This sample was collected from the sand ridge.
- 865 ^{†, ‡} Ages for Tianluoshan were obtained from Zheng et al., (2009; 2012) and
- recalibrated using the Calib 7.1 program, as were other ages in the present study.

Table 3 Single-grain OSL age for the sand ridge sample from the Yushan site together with supporting dose rate and equivalent dose (D_e) data.

	Lab	U	Th	K	Water	E	Environmental dose rate* (Gy/ka)				${\rm D_e}^\dagger$	Age	Calibrated
		(ppm)	(ppm)	(%)	content								
	No.				(%)	Beta	Gamma	Cosmic-ray	Total	dispersion	(Gy)	ka	age (BCE)
	L144	3.5 ± 0.13	16.3 ± 0.39	2.01 ± 0.06	19 ± 5	1.77 ± 0.10	1.36 ± 0.07	0.18 ± 0.12	3.31 ± 0.12	0.18 ± 0.03	15.2 ± 0.57	4.59 ± 0.24	$2575 \pm 240^{\$}$
869	* The d	lose rate and	l OSL ages v	vere calculate	d using	the 'DRAC'	(Durcan et al	., 2015).					
870 871 872	[†] Singl and gro single	e grains of e een-laser sti grain D _e cal	quartz were r mulation at 1 culation.	neasured in the second se	he regen 9 s. The	erative-dose first 0.06 s o	protocol, usi f stimulation	ing a test-dose minus a back	e of 3.03 Gy ground estir	, a preheat of nated from th	200 °C for the integral o	10 s, a 160 ° f the last 0.1	C cut heat for 0 s, s was used for
873	^{\$} This	calibrated c	alendar age v	vas calculated	d by sub	tracting 201	5 that is the s	ampling year	of the sand	ridge from the	e OSL-dated	d age 4.59±0	.24 ka.
874													
875													
876													
877													
878													
879													
880													

Table 4 Reconstruction of relative sea levels using sea-level indicators obtains from units T0410 and T0513 (Fig. 2B, C). Sedimentary facies was determined according to the lithology, organic carbon, diatoms and dinoflagellate cysts. Tidal levels were collected from the Zhenhai gauge station (Fig. 1; 1958–1980). MSHW, 1.61 m; MHW, 1.17 m; MNHW, 0.63 m. All heights are given with respect to current mean sea level (Yellow Sea datum). Abbreviations: MSHW, mean spring high water; MHW, mean high water; MNHW, mean neap high water.

	Alt.	Cultural	Sedimentary	Calibrated	Indicative	Palaeo-	Error
Unit	(m)	layer	facies	age (BCE)	meaning	sea level (m)	(m)
T0410	1.44	3	Saltmarsh	1395–1500	MHW-MSHW	0.05	0.22
T0410	1.15	4	Upper tidal flat	2335–2495	MNHW-MHW	0.25	0.27
T0513	1.16 [†]	6	Freshwater/ brackish marsh	2560*	0–0.5 m above MSHW	-0.70	0.25
T0513	0.76	6	Freshwater marsh	2635–2880	0–0.5 m above MSHW	-1.10	0.25
T0410	0.61	7	Saltmarsh	3945-4170	MHW-MSHW	-0.78	0.22
T0513	0.45	8	Upper tidal flat	42604360	MNHW-MHW	-0.45	0.27
T0513	0.37	9	Freshwater marsh	4440–4540	0–0.5 m above MSHW	-1.49	0.25

* This is the interpolated age, i.e., the age of storm event that drowned the peat layer.

[†] Calibrated value of the original peat top assuming that the peat layer above Holocene base in the west part of T0513 was ~30-cm thick, and had been compacted from an original ~40-cm thick layer, using the highest estimation of percentage (30%) of peat compaction with an overburden of 1 m (van Asselen et al., 2011). **Table 5** Sediment profiles with high-resolution AMS ¹⁴C ages from the Taihu and Yaojiang Plains and head of the Hangzhou Bay, East China coast.Locations of these profiles are indicated in Fig. S2.

No. (Fig. 1)	Name of site	Dated period (BCE unless stated as AD)	Number of dates from 2000–3000 BCE	Covering the end of Liangzhu culture (Y/N)	Ecological and environmental indicators at the end of Liangzhu culture (Y/N)	Proxy	Signal of flooding	Data source
1	Yushan	1450-4490	4+1 (OSL)	Y	Y (sedimentation rate:0.5-4 mm yr ⁻¹)	Lithology, sedimentology, organic geochemistry, diatom, macroflora	Storm and marine flooding	Present study
2	Tianluoshan (TLS)	0-5080	2	Y	Y	Diatom, phytoliths, macroflora	Marine flooding	Zheng et al., 2016
3	Kuahuqiao (KHQ)	1160-9020	1	Y	Y	Lithology	Marine flooding	ZPICRA, 2004
4	Tangmiaocun (TMC)*	2730-4020	1	Y	Y	Diatom, rice phytoliths	Slight increase in salinity	Zong et al., 2011
5	ZX-1	685-6650	1	Y	Y	Pollen, foraminifera	Marine flooding	Stanley et al., 1999; Chen et al., 2005

6	Pingwang	860-5225	0	Y	Limited data due to very low sedimentation rate (0.1 mm yr ⁻¹)	Pollen	Increase in local water level	
7	Luojiang/ Hemudu	AD 955- 8155	2	Y	Hiatus inferred from the radiocarbon age (sedimentation rate: 0.1 mm yr ⁻¹)	Pollen	_	Qin et al., 2011
8	Wujiangbang	5435-6145	0	Ν	Ν	Pollen	_	Qin et al., 2011
9	Qingpu	AD 170–3710	1	Y	Y	Pollen	Increase in local water level [†]	Itzstein-Davey et al., 2007
10	Guangfulin [‡]	AD 860–4360	1	Y	Υ	Pollen	Increase in local water level [§] and increase in saline biota (Chenopodiaceae)	Chen, 2002; Atahan et al., 2008; Wang et al., 2012
11	Siqian	4290-6160	0	Ν	Ν	Diatom	_	Zong et al., 2011
12	Tinglin	4640-6250	0	Ν	Ν	Diatom, rice phytoliths	_	Zong et al., 2011
13	Longnan	2860-3580	1	Y	Y	Pollen	Increase in local water level	Zong et al., 2012
14	Yuanjiadi	1920-4430	0	Y	Y	Pollen	Increase in local water level	Zong et al., 2012

15	Guoyuancun	1770-1850	0	Ν	Ν	Pollen	-	Zong et al., 2012
16	Tianyilu	390-2080	0	Ν	Ν	Pollen	_	Zong et al., 2012
17	Caoxieshan	1180–2790	1	Y	Y	Pollen	Increase in local water level [¶]	Zong et al., 2012
18	Chuodun	10-1440	0	Ν	Ν	Pollen	_	Zong et al., 2012
19	Liangzhu	1120-5605	0	Uncertain due to no age constrain	Y	Pollen	Increase in saline biota (Chenopodiaceae)	Li et al., 2010

* The name "Tangcunmiao" in the original paper should be "Tangmiaocun".

[†] Age-depth model determined by excluding results from old carbon. Increase in local water level is inferred from the increase in abundance of *Typha* and *Triglochin-Potamogeton* type and a decrease in *Artemisia*.

[‡] There are two profiles at this site, one from Atahan et al. (2008) and the other (profile-1999) from Chen (2002).

[§] Age-depth model of profile in Atahan et al. (2008) was determined by excluding results from old carbon (Wang et al., 2012). Increase in local water level is inferred from the increase in *Typha* abundance in both profiles. Increase in saline biota (Chenopodiaceae) abundance is seen in profile-1999 by Chen (2002).

[¶] End of Liangzhu period is inferred from the abrupt decline in abundance of cultural NPPs at 0.6 m (their Figure 6a in Zong et al., 2012). Increase in local water level is inferred from the increase in abundance of open freshwater NPPs.

Figure 1

Figure 2

Figure 5

Figure 6

1	Supplementary Materials for
2	Mid-Holocene abrupt sea-level rise and human response in the East China coastal plain
3	Zhanghua Wang ^{1*} , David B. Ryves ² , Shao Lei ³ , Xiaomei Nian ¹ , Ye Lv ¹ , Liang Tang ¹ , Long
4	Wang ¹ , Jiehua Wang ³ , Jie Chen ⁴
5	¹ State Key Laboratory of Estuarine and Coastal Research, ECNU, Shanghai 200062, China.
6	² Centre for Hydrological and Ecosystem Science (CHES), Department of Geography,
7	Loughborough University, Loughborough LE11 3TU, UK.
8	³ Ningbo Municipal Institute of Cultural Relics and Archaeology, Ningbo, China.
9	⁴ Shanghai Museum, Shanghai 200003, China.
10 11 12	correspondence to: zhwang@geo.ecnu.edu.cn
12 13 14	This file includes:
15	Tables S1 to S2
16	Figs. S1 to S2
17	References
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28 20	
30	
31	
32	
33	
34	
35	

Table S1 Neolithic sites (seeing Fig. 1 for their location) with 85 radiocarbon ages during and post the Liangzhu period, which we collected from all publications.

Radiocarbon ages were recalibrated with the programme Calib 7.1, using a 14 C half-life of 5568 years. This work is to revise the time span of the Liangzhu culture and results show that it ended at ~2500 BCE (Fig. 5).

Number in S.I. Fig. 1	Name of site	Cultural layer	Dating material	Radiocarbon age (BP)	2 sigma Calibrated	Prob.	Median prob. (cal.	Data source	Dating method
1	Yushan	Natural deposit above Liangzhu laver	Plant fragment	3940±30	2335–2495	0.900	2440	Present study	AMS ¹⁴ C
3	Fujiashan	Natural deposit above Liangzhu layer	Peaty mud	3955±35	2345–2570	1.000	2475	[1]	AMS ¹⁴ C
4	Tianluoshan	Natural deposit above the rice field	Plant fragment	3760±40	2110-2290	0.813	2175	[2]	AMS ¹⁴ C
5	Xiangjiashan	Disturbed layer above the Liangzhu	Wood	3990±130	2195–2880	0.986	2515	[3]	Radiometric
8	Guangfulin	Guangfulin	_	3770±60	2025-2350	0.947	2195	[4]	AMS ¹⁴ C
8	Guangfulin	Guangfulin	_	3780±60	2030-2350	0.925	2210	[4]	AMS ¹⁴ C
13	Qianshanyang	Guangfulin	Wood	3545±35	1765-1975	0.994	1890	[5]	AMS ¹⁴ C
13	Qianshanyang	Guangfulin	Charcoal	3580±35	1875-2030	0.944	1935	[5]	AMS ¹⁴ C
13	Qianshanyang	Guangfulin	Charcoal	3775±35	2125-2300	0.922	2200	[5]	AMS ¹⁴ C
13	Qianshanyang	Guangfulin	Rice	3550±35	1770–1975	0.983	1895	[5]	AMS ¹⁴ C
13	Qianshanyang	Guangfulin	Seed	3580±55	1760-2045	0.962	1935	[5]	AMS ¹⁴ C
13	Qianshanyang	Guangfulin	Charcoal	3630±40	1890–2135	1	1995	[5]	AMS ¹⁴ C
13	Qianshanyang	Guangfulin	Bone	3635±35	1900–2130	1	2000	[5]	AMS ¹⁴ C

13	Qianshanyang	Qianshanyang	Charcoal	3780±40	2120-2340	0.919	2205	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Charcoal	3780±45	2115-2345	0.886	2210	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Charred bamboo	3895±40	2280-2475	0.965	2380	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Charred bamboo	3895±35	2285-2475	0.992	2385	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Charcoal	3770±35	2125-2295	0.900	2190	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Charcoal	3795±35	2135-2345	0.982	2230	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Wood	3815±35	2140-2350	0.934	2255	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Bamboo	3755±35	2040-2285	1.000	2170	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Bamboo	3820±35	2190-2350	0.828	2265	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Rice	3720±60	1945-2290	1.000	2120	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Seed	3840±40	2200-2460	0.991	2305	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Seed	4060±70	2465-2795	0.845	2620	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Plant fiber	3960±50	2295-2580	1.000	2475	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Seed	3905±75	2195-2575	0.982	2380	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Bone	3910±40	2285-2490	0.980	2395	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Bone	3820±35	2190-2350	0.828	2265	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Burned earth	3800±40	2130-2350	0.935	2240	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Bamboo	3675±40	1945–2145	0.960	2065	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Charcoal	3800±40	2130-2350	0.935	2240	[5]	AMS ¹⁴ C
13	Qianshanyang	Qianshanyang	Charcoal	3750±40	2035-2235	0.881	2160	[5]	AMS ¹⁴ C
1	Yushan	Liangzhu	Tree stump	4210±30	2680-2900	1.000	2790	Present study	AMS ¹⁴ C
1	Yushan	Liangzhu	Tree stump	4240±30	2705–2910	1.000	2880	Present study	AMS ¹⁴ C
1	Yushan	Liangzhu	Plant fragments	4170±30	2635-2880	1.000	2760	Present study	AMS ¹⁴ C
1	Yushan	Liangzhu	Organic sediments	4770±30	3515-3640	0.980	3570	Present study	AMS ¹⁴ C
2	Cihu	Liangzhu	Wood	4790±85	3365-3710	1.000	3565	[6]	Radiometric

4	Tianluoshan	Top of the Neolithic rice field	Seeds	4020±40	2465-2635	0.980	2540	[7]	AMS ¹⁴ C
4	Tianluoshan	Top of the Neolithic rice field	Seeds	4015±45	2455–2675	0.970	2540	[1]	AMS ¹⁴ C
5	Xiangjiashan	Liangzhu	Wood	4115±90	2475-2890	1.000	2695	[3]	Radiometric
6	Quemuqiao	Liangzhu	Wood	3995±95	2275-2780	0.905	2525	[8]	Radiometric
7	Tinglin	Liangzhu	Charred wood	4320±70	2855-3120	0.885	2965	[9]	Radiometric
8	Guangfulin	Liangzhu	Organic-rich mud	4110±30	2575-2865	1.000	2685	[10]	AMS 14C
8	Guangfulin	Liangzhu	Organic-rich mud	4020±30	2470-2585	0.959	2530	[10]	AMS 14C
9	Guoyuancun	Liangzhu	Wood	4080±100	2435-2895	0.973	2650	[9]	Radiometric
10	Fuquanshan	Liangzhu	Charred wood	4730±80	3360-3655	1.000	3515	[11]	Radiometric
11	Siqian	Liangzhu	Bamboo	4645±70	3325-3635	0.910	3445	[12]	Radiometric
12	Longnan	Liangzhu	Charcoal	4685±90	3320-3650	0.931	3465	[13]	Radiometric
12	Longnan	Liangzhu	Charcoal	4595±80	3090-3530	0.950	3345	[13]	Radiometric
12	Longnan	Liangzhu	Charcoal	4280±125	2570-3140	0.879	2905	[13]	Radiometric
12	Longnan	Liangzhu	Macrocharcoal	4290±100	2620-3125	0.911	2915	[13]	Radiometric
13	Qianshanyang	Liangzhu	Charred rice	4715±100	3325-3705	0.953	3495	[9]	Radiometric
13	Qianshanyang	Liangzhu	Wood tool	4565±90	3010-3525	0.976	3270	[14]	Radiometric
13	Qianshanyang	Liangzhu	Wood tool	4130±85	2545-2895	0.929	2710	[14]	Radiometric
13	Qianshanyang	Liangzhu	Bamboo	4025±85	2340-2870	0.996	2570	[14]	Radiometric
14	Miaoqian	Late Liangzhu	Charcoal	4184±61	2620-2900	0.975	2760	[15]	Radiometric
14	Miaoqian	Late Liangzhu	Charcoal	4137±54	2575-2880	1.000	2730	[15]	Radiometric
15	Anxi	Liangzhu	Wood	4215±180	2340-3355	0.999	2800	[14]	Radiometric
16	Bianjiashan	Liangzhu	Freshwater gastropod shell	4385±40	2905-3105	0.98	3000	[16]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	Plant remains	4200±40	2665-2900	0.98	2780	[16]	AMS ¹⁴ C
15 16 16	Anxi Bianjiashan Bianjiashan	Liangzhu Liangzhu Liangzhu	Wood Freshwater gastropod shell Plant remains	4215±180 4385±40 4200±40	2340–3355 2905–3105 2665–2900	0.999 0.98 0.98	2800 3000 2780	[14] [16] [16]	Ra AN Al

16	Bianjiashan	Liangzhu	Plant remains	4150±55	2580-2880	1	2740	[16]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	Plant remains	4095±70	2490-2875	1	2675	[16]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	Plant remains	4265±35	2705-3000	1	2895	[16]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	Plant remains	4220±35	2680-2905	1	2800	[16]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	Plant remains	4235±55	2695-2915	1	2870	[16]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	Plant remains	4220±35	2680-2905	1	2800	[16]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	Plant remains	4130±40	2615-2870	0.93	2725	[16]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	Plant remains	4010±35	2465-2590	0.96	2530	[16]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	Plant remains	4275±40	2865-3010	0.92	2900	[16]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	Plant remains	4145±35	2620-2875	1	2740	[16]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	Ash	4150±30	2630-2875	1	2745	[16]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	Ash	4030±40	2470-2640	0.95	2550	[16]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	Fabric	4100±30	2505-2860	1	2665	[16]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	HyPy residue of charcoal*	4020±30	2470–2585	0.959	2530	[17]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	HyPy residue of charcoal	4150±30	2630-2825	0.804	2745	[17]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	HyPy residue of charcoal	4110±30	2575–2865	1.000	2685	[17]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	HyPy residue of charcoal	4160±30	2655–2880	0.951	2755	[17]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	Wood	4200±30	2680-2895	1	2785	[17]	AMS ¹⁴ C
16	Bianjiashan	Liangzhu	Wood	4170±30	2635-2880	1	2765	[17]	AMS ¹⁴ C
17	Zhumucun	Liangzhu	Plant	4170±20	2675-2815	0.805	2770	[18]	AMS ¹⁴ C
17	Zhumucun	Liangzhu	Charred rice grain	4105±20	2580-2855	1.000	2660	[18]	AMS ¹⁴ C
17	Zhumucun	River channel [†]	Charred rice grain	3885±25	2295-2465	1.000	2385	[18]	AMS ¹⁴ C

17	Zhumucun	Liangzhu	Charred rice grain	4305±25	2885-2940	0.925	2910	[18]	AMS ¹⁴ C
18	Sidun	Liangzhu	Charcoal	4150±205	2200-3345	0.996	2720	[19	Radiometric
19	Yangzhu	Liangzhu	Wood	4310±110	2625-3140	0.849	2955	[20]	Radiometric

40 * HyPy (catalytic hydropyrolysis) residue is the contaminant-free black carbon fraction of charcoal and thus can produce an accurate ¹⁴C age.

41 [†] This sample was collected from river channel which could deposit younger sediments, thus it was excluded in Fig. 5.

Table S2 Radiocarbon ages collected from TLS (Tianluoshan), KHQ (Kuahuqiao), TMC

46 (Tangmiaocun) and ZX-1 and their calibration using the Calib 7.1 program. The mollusk shell

47 was calibrated using the Marine13 calibration curve and the regional reservoir correction

48 (Δ R) value of -1 ± 143 was averaged from samples from Tsingtao, southwest coast of Korea

49 and northwest coast of Taiwan^{24–26}.

Name of site	Dating	Radiocarbon	2 sigma	Prob.	Median	Data
	material	age (BP)	Calibrated		prob. (cal.	source
			BCE		BCE)	
TLS	Seeds	4020±40	2465-2635	0.98	2540	[7]
	Seeds	4275±40	2865-3010	0.92	2900	[7]
	Seeds	4585±35	3115-3500	1	3355	[7]
	Seeds	4660±40	3360-3525	0.96	3455	[7]
	Seeds	5465±45	4235-4375	0.96	4315	[7]
	Seeds	5620±35	4360-4520	1	4450	[7]
KHQ	Not given	2950±100	915-1415	1	1160	[21]
	Not given	3825±100	2015-2500	0.97	2280	[21]
	Not given	4410±120	2860-3375	0.96	3095	[21]
	Not given	4820±150	3325-3965	0.97	3590	[21]
	Not given	5070±150	3630-4245	0.96	3870	[21]
	Not given	5820±170	4335-5075	0.99	4690	[21]
TMC	Pollen	4140±40	2615-2875	0.97	2735	[22]
	residue					
	Pollen	5230±40	3965-4225	1	4030	[22]
	residue					
ZX-1	Mollusc	4160±40	1870–2695	1	2280	[23]
	shell					

Figure S2 Distribution of sediment profiles with high-resolution radiocarbon dates (Tables 4,

78 S2). The map is generated by software ArcGis 10.1 (<u>www.esrichina.com.cn</u>) using the data

result of topography provided by International Scientific & Technical Data Mirror Site,

80 Computer Network Information Center, Chinese Academy of Sciences

- 81 (http://www.gscloud.cn).
- 82
- 83
- 84
- 85

87 **References**

88	1.	Zheng, Y., Sun, G., Qin, L., Li, C., Wu, X., Chen, X., 2009. Rice fields and modes of rice
89		cultivation between 5000 and 2500 BC in east China. Journal of Archaeological Science
90		36, 2609–2616.

- Ningbo Municipal Institute of Cultural Relics and Archaeology, 2013. FU JIA
 SHAN--The Excavated Report on the Neolithic Site. Science Press, Beijing (in Chinese).
- 93 3. Institute of Archaeology, Chinese Academy of Social Science, 1996. Radiocarbon reports
- 94 (23). KAO GU (7), 66–70 (in Chinese).
- Shanghai Museum, 2002. The excavated report on the Neolithic site GUANG FU LIN,
 Songjiang, Shanghai during 1999-2000. KAO GU (10), 31–48 (in Chinese).
- 97 5. Zhejiang Provincial Institute of Cultural Relics and Archaeology, Huzhou Meseum, 2014.
- 98 Qianshanyang: a report on the third and fourth excavations of the site. WEN WU Press,
- 99 Beijing (in Chinese).
- 100 6. Liu, J., 2006. The Hemudu Culture. WEN WU Press, Beijing (in Chinese).
- 7. Zheng, Y., Sun, G., Chen, X., 2012. Response of rice cultivation to fluctuating sea level
 during the Mid-Holocene. Chinese Science Bulletin 57, 370–378.
- 103 8. Jiaxing Museum, 1974. The black pottery discovered at Quemuqiao, Jiaxing. KAO GU
- 104 (4), 249–250 (in Chinese).
- 105 9. Institute of Archaeology & Chinese Academy of Social Science, 1992. Radiocarbon
 106 database in Chinese Archaeology (1965–1991). WEN WU Press, Beijing (in Chinese).
- 107 10. Wang, Z., Chen, J., Zhan, Q., Zhuang, C., Wu, X., Wang, X., 2014. Holocene paleo-

- 108 environmental change and its relationship with the Neolithic culture at Guangfulin site.
- 109 Proceedings on the excavation at Guang Fu Lin, ed. Shanghai Museum (Shanghai Gu Ji
- 110 Press, Shanghai), pp325–335 (in Chinese).
- 111 11. Shanghai Cultural Relics Committee, 2001. FU QUAN SHAN-The excavated report on
 112 the Neolithic Site. WEN WU Press, Beijing (in Chinese).
- 113 12. Department of Archaeology, Beijing University, 1996. Radiocarbon reports (10). WEN
 114 WU (6), 91–95 (in Chinese).
- 115 13. Suzhou Museum & Wujiang cultural relics committee, 1990. The report of first and second
- excavation on the Longnan Neolithic site, Wujiang, Jiangsu. WEN WU (7), 1–27 (in
 Chinese).
- 14. Institute of Archaeology, Chinese Academy of Social Science, 1977. Radiocarbon reports.
 KAO GU (3), 200–204 (in Chinese).
- 120 15. Institute of Archaeology, Chinese Academy of Social Science, 1999. Radiocarbon reports
- 121 (25). KAO GU (7), 80–83 (in Chinese).
- 122 16. Zhejiang Provincial Institute of Cultural Relics and Archaeology, 2014. Bianjiashan Site,
- 123 the Sixth Part Report of Liangzhu Culture Sites. WEN WU Press, Beijing (in Chinese).
- 124 17. Zhang, X., Huang, D., Deng, H., Snape, C., Meredit, h W., Zhao, Y., Du, Y., Chen, X.,
- 125 Sun, Y., 2015. Radiocarbon dating of charcoal from the Bianjiashan site in Hangzhou:
- New evidence for the lower age limit of the Liangzhu Culture. Quaternary Geochronology30, 9–17.
- 18. Qiu, Z., Shang, X., Ferguson, D.K., Jiang, H., 2016. Archaeobotanical analysis of diverse
 plant food resources and palaeovegetation at the Zhumucun site, a late Neolithic settlement

- 130 of the Liangzhu Culture in east China. Quaternary International 426, 75–85.
- 131 19. Nanjing Museum, 1984. The excavated report on the Sidun Neolithic site, Wujing,
- 132 Changzhou, Jiangsu in 1982. KAO GU (2), 109–129 (in Chinese).
- 133 20. Wu, J., 1988. Distribution of prehistory sites and the environmental change on the Yangtze
- 134 Delta plain. DONG NAN WEN HUA (6), 16–36 (in Chinese).
- 135 21. ZPICRA, 2004. KUA HU QIAO-Archaeological Report of Puyang River Valley I. WEN
 136 WU Press, Beijing (in Chinese).
- 22. Zong, Y., Innes, J.B., Wang, Z., Chen, Z., 2011. Mid-Holocene coastal hydrology and
 salinity changes in the east Taihu area of the lower Yangtze wetlands, China. Quaternary
 Research 76, 69–82.
- 140 23. Chen, Z., Wang, Z., Schneiderman, J., Cai, Y., 2005. Holocene climate fluctuations on
 141 millennium scale in the Yangtze delta of eastern China: implications and response. The
 142 Holocene 15, 917–926.
- Southon, J., Kashgarian, M., Fontugne, M., Metivier, B., Yim, W.W.-S., 2002. Marine
 reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44, 167–180.

25. Kong, G.S., Lee, C.W., 2005. Marine reservoir corrections (ΔR) for southern coastal

- 146 waters of Korea. The Sea, Journal of the Korean Society of Oceanography 10(2), 124–
 147 128.
- 148 26. Yoneda, M., Uno, H., Shibata, Y., Suzuki, R., Kumamoto, Y., Yoshida, K., Sasaki, T.,
- 149 Suzuki, A., Kawahata, H., 2007. Radiocarbon marine reservoir ages in the western Pacific
- 150 estimated by pre-bomb molluscan shells. Nuclear Instruments and Methods in Physics
- 151 Research B 259, 432–437.