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14 Abstract: Coastal flooding catastrophes have affected human societies on coastal 

15 plains around the world on several occasions in the past, and are threatening 21th 

16 century societies under global warming and sea-level rise. However, the role of 

17 coastal flooding in the interruption of the Neolithic Liangzhu culture in the lower 

18 Yangtze valley, East China coast has been long contested. In this study, we used a 

19 well-dated Neolithic site (the Yushan site) close to the present coastline to 

20 demonstrate a marine drowning event at the terminal stage of the Liangzhu culture 

21 and discuss its linkage to relative sea-level rise. We analysed sedimentology, 

22 chronology, organic elemental composition, diatoms and dinoflagellate cysts for 
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23 several typical profiles at the Yushan site. The field and sedimentary data provided 

24 clear evidence of a palaeo-typhoon event that overwhelmed the Yushan site at ~2560 

25 BCE, which heralded a period of marine inundation and ecological deterioration at 

26 the site. We also infer an acceleration in sea-level rise at 2560–2440 BCE from the 

27 sedimentary records at Yushan, which explains the widespread signatures of coastal 

28 flooding across the south Yangtze coastal plain at that time. The timing of this mid-

29 Holocene coastal flooding coincided with the sudden disappearance of the advanced 

30 and widespread Liangzhu culture along the lower Yangtze valley. We infer that 

31 extreme events and flooding accompanying accelerated sea-level rise were major 

32 causes of vulnerability for prehistoric coastal societies.

33 Keywords: Palaeo-typhoon event; Sea-level rise; Coastal flooding; Neolithic

34

35 1. Introduction

36 Global sea-level rise is predicted to accelerate during the 21st century and could 

37 rise 65±12 cm by 2100 compared with 2005 (Kopp et al., 2016; Nerem et al., 2018), 

38 which will increase the frequency of extreme events and the risk of coastal flooding 

39 (Woodruff et al., 2013). The vulnerability of low-lying coastal plains and deltas 

40 across the world is further exacerbated due to human-induced sediment starvation and 

41 land sinking (Syvitski et al., 2009; Giosan et al., 2014). The west Pacific Ocean coast 

42 is one of the most vulnerable regions in the world because it is characterized by active 

43 tropical cyclones (Woodruff et al., 2013) and, in recent decades, its rate of relative 

44 sea-level rise is three times higher than the global mean (Nicholls and Cazenave, 
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45 2010). In the densely-populated Yangtze delta, East China (Fig. 1), models under 

46 future climate scenarios predict an increase in flood risk from extreme events and 

47 relative sea-level rise by 150% to 400% in the next 50 years (Tessler et al., 2015). In 

48 fact, Typhoon Fitow (the strongest October typhoon making landfall in China for over 

49 60 years) in 2013 caused flooding to a depth >0.5 m across most of the Yaojiang 

50 Plain, south east of the Hangzhou Bay (Fig. 1C). There is thus clearly an urgent need 

51 for integrated research on sea-level rise, extreme events, coastal flooding and human 

52 response.

53 Coastal flooding is not a new threat. The fact that the south Yangtze coastal 

54 plains (Fig. 1B) hold relative thick and rich archaeological records, preserved in 

55 marine and deltaic flood basin sediments (Zong et al., 2007; Zheng et al., 2012), is 

56 direct witness of past flooding of these areas during human occupation. Neolithic 

57 people including the well-known Kuahuqiao, Hemudu and Liangzhu cultures settled 

58 and practiced flood management on the coastal wetlands of Hangzhou Bay (Fig. 1) 

59 since ~6000 BCE (Zhao, 1998; Zong et al., 2007; Liu and Chen, 2012; Qin, 2013; Liu 

60 et al., 2017). People of the Liangzhu culture, which was one of the most developed 

61 and complex societies known in prehistory (Lawler, 2009; Liu and Chen, 2012; Qin, 

62 2013), even constructed massive earth-and-stone walls to hold back floods near their 

63 capital city, Mojiaoshan, at the head of Hangzhou Bay near present-day Hangzhou 

64 (Fig. 1B; Lawler, 2009; Liu and Chen, 2012; Liu et al., 2017). Yet they abandoned 

65 their state capital complex at around 2500 BCE, as shown by dating sedimentary 

66 profiles from the capital city (Zhang et al., 2015; Wang et al., 2017), despite their 
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67 highly developed techniques in agricultural and landscape management (Zhuang et 

68 al., 2014; Liu et al., 2017). The subsequent Neolithic Qianshanyang and Guangfulin 

69 cultures that appeared at ~2400–1800 BCE were reported to be much less organized 

70 and less developed (Shanghai Museum, 2002; ZPICRA and Huzhou Museum, 2014). 

71 Studying these archaeological records with a focus on the linkage between flood 

72 deposits and cultural interruptions can shed light on the increasing flood risk in this 

73 economically important and populous area in the near future.

74 There has been much speculation and debate surrounding the Liangzhu cultural 

75 decline among archaeologists and environmental scientists. Archaeologists speculate 

76 that the abandonment of the Liangzhu capital city might have been related to floods 

77 because a layer of silt, inferred as flood deposits, was found on top of the late 

78 Liangzhu cultural layer in many areas around the capital city (Liu and Chen, 2012). 

79 An early environmental study suggested marine inundation played a key role, based 

80 on the marine fossil record of core ZX-1 in the eastern Taihu Plain (Stanley et al., 

81 1999), but later work reported no marine flooding at other sites in the Taihu Plain at 

82 this time (Zong et al., 2011). Later Innes et al. (2014) suggested a combination of 

83 rising local water level and climatic deterioration was the probable cause. We propose 

84 that to settle the debate and test these competing hypotheses, it is necessary to carry 

85 out an integrated study of relative sea-level change and environmental and human 

86 response. It is particularly important to examine directly the event-character of the 

87 floodbeds covering the Liangzhu culture layer recovered from archaeological sites.
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88 The Yushan archaeological site was discovered in 2013. It is only 7.3 km from 

89 the present coastline (Figs 1, 2A). Diagnostic black pottery and tools for 

90 woodworking and farming (Fig. 1D–F) of the Liangzhu culture were recovered from 

91 this site. The Liangzhu cultural layer was overlain by mud deposits ~0.4–0.5 m thick 

92 which did not contain artefacts, hinting at an inundation event at the end of the 

93 Liangzhu culture. Yushan may therefore be key to addressing this debate based on a  

94 detailed investigation of the stratigraphic records within this site and may provide 

95 important evidence on the  mechanisms involved in the decline of the Liangzhu 

96 culture. In this study we first carried out multiproxy lithological, sedimentological, 

97 palaeontological and organic geochemical analyses of well-dated, high-resolution 

98 sequences at multiple locations within the Yushan site to examine the nature of flood 

99 deposits covering the Liangzhu cultural layer. We then determined the relative sea 

100 level change at the end of the Liangzhu culture using sea level indicators, including 

101 the basal peat (Shennan et al., 2015) obtained from the Yushan site. We also 

102 synthesised existing profiles from both the Taihu Plain and plains along Hangzhou 

103 Bay to compare the flood signatures and to discuss the linkage between relative sea-

104 level rise and flood hazards at the late stage of the Neolithic period on the south 

105 Yangtze coast, East China. The results help to resolve this debate over the Liangzhu 

106 cultural decline and marine flooding and show the sensitivity and vulnerability of 

107 prehistorical human societies to extreme events and flooding.

108

109 2. The study area and the site
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110 The south Yangtze coastal plain is mainly made up of the Taihu Plain and coastal 

111 plains along the Hangzhou Bay, including the Yaojiang Plain, which is located to the 

112 south east and is separated by uplands from Hangzhou Bay (Fig. 1B). Sediments 

113 deposited in these plains were derived mainly from the Yangtze River during the 

114 Holocene, as sediment load from other local rivers is negligible compared to that from 

115 the Yangtze River (Liu et al., 2013). The freshwater-dominated Taihu Plain was 

116 formed ~6500–6000 years ago when sea level was relatively stable and the Yangtze 

117 delta started its progradation (Hori et al., 2001; Wang et al., 2012). However, the rate 

118 of shoreline advance was extremely slow between 6500 and 4000 years ago, as 

119 indicated by distribution of the chenier ridges in the east part of the plain (Fig. 1B; 

120 Yan et al., 1989), caused mainly by a large amount of sediment trapping in the north 

121 Yangtze delta plain (Li et al., 2002; Hori et al., 2001) and the decline in the Yangtze 

122 sediment supply owing to weakening of the East Asian Summer Monsoon ~6000 

123 years ago (Zhan et al., 2012). Rapid shoreline accretion only occurred over past 2000 

124 years, in concert with an increase in sediment supply from human activity (Hori et al., 

125 2001; Wang et al., 2011). Sediment cores from the south coastal plain of Hangzhou 

126 Bay demonstrate that rapid infilling of Hangzhou Bay occurred during the early 

127 Holocene (Gao and Collins, 2014; Zhang et al., 2015). A long period of sedimentary 

128 hiatus then occurred during the middle to late Holocene with return to net 

129 sedimentation in Hangzhou Bay only in the past 2000 years (Gao and Collins, 2014; 

130 Zhang et al., 2015).
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131 Tide dominates the south Yangtze coast with a mean tidal range of 2.7 m (Chen 

132 et al., 1985). The Yaojiang Plain of south east Hangzhou Bay has a smaller mean tidal 

133 range of 1.85 m. Uehara et al. (2002) reconstructed the palaeotidal fields in the 

134 Yangtze Estuary and the east China marginal sea by including the effect of palaeo-

135 topographic change from sedimentation since the Last Glacial Maximum. The 

136 simulated amplitude M2 tide, which is the most significant component of tide in this 

137 region, was 1.0–1.2 m on the coast south to the Hangzhou Bay (including the 

138 Yaojiang Plain) and 1.2–1.4 m on the coast of Taihu Plain during the middle 

139 Holocene (6 ka; Uehara et al., 2002). It has increased to 1.2–1.6 m in the inner and 

140 south part of the Hangzhou Bay at the present day, while remaining at 1.0–1.2 m in 

141 the south east part of the Bay. Ground elevation is 0–2 m above present mean sea 

142 level (the Yellow Sea datum, MSLYSD) in most of central Taihu Plain and Yaojiang 

143 Plain, and 2–5 m in the plains along Hangzhou Bay (Fig. 1B).

144 The Yushan site is located in the north east of Yaojiang Plain, between the edge 

145 of the upland and the floodplain (Fig. 1). The site was excavated by the Ningbo 

146 Municipal Institute of Cultural Relics and Archaeology over an area of 4300 m2 

147 during September, 2014 to January, 2015. Each excavation unit is 10 m × 10 m in size 

148 (Fig. 2A). The archaeological sequence spans from the early/middle Hemudu culture 

149 to the Song dynasty, with ten layers numbered top to bottom correlating to distinct 

150 lithology, sedimentology and archaeological finds across the site (Table 1). Individual 

151 cultural layers are typically 25–50 cm thick, with the whole sequence spanning 1–2.5 
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152 m across the site (Fig. 2B, C). The cultural layers onlap the weathered bedrock or 

153 hardened mud surfaces in excavation units close to the upland, such as T0410 and 

154 T0513. The Holocene base then dips rapidly and is buried below the floodplain (Fig. 

155 2).

156 Among the 10 layers (Table 1), layers 9, 7, 6 and 3 are composed of organic-rich 

157 mud or peat that contain artefacts of prehistoric early and middle Hemudu, late 

158 Hemudu and Liangzhu cultures and from the Shang and Zhou dynasty, respectively. 

159 Layers 10, 8, 5 and 4 are devoid of any cultural artefacts and are considered to be 

160 formed without human disturbance. Note that layer 7 only occurs at the edge of the 

161 upland, such as in unit T0410 (Fig. 2C). In addition, an erosional surface is prominent 

162 on top of the peat layer 6a in many units, and this peat layer is totally eroded away 

163 even in those units close to the upland (Figs 2, 3). Together with the erosional surface, 

164 a sand ridge of 20–30 cm high and ca. 60 cm wide that was defined as layer 5b, dips from the 

165 edge of upland eastward and cuts into layer 6 (Fig. 3D–F). Gravels, fragments of Liangzhu 

166 artefacts and abundant plant fragments were present in the sand ridge. Mixtures of 

167 sand and mud, also defined as layer 5b, only occurs above the erosional surface in the 

168 area between the sand ridge and the upland.

169

170 3. Materials and Methods 

171 During our excavation, we carefully examined the lithological and stratigraphic 

172 sequences in each excavation unit. We selected the north wall of unit T0415 for 
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173 analyses of proxies including organic chemistry, diatoms and dinoflagellate cysts, 

174 because this unit is on the east edge of the excavation area where less human 

175 disturbance occurred (Fig. 2A). We also collected samples for these proxy analyses 

176 from unit T0410 because layer 7 is missing in unit T0415. We then identified the 

177 sedimentary facies of each layer and recognized marine inundation by examining the 

178 lithology and analysing proxies. 

179 Twenty-seven (27) samples were collected from the north wall of unit T0415 for 

180 analyses of organic carbon and diatoms. Thirty-four (34) samples from layer 3 to 9 

181 from the west wall of unit T0410 and seven samples from layer 6 of unit T0415 were 

182 collected for dinoflagellate cyst identification. In addition, seven tree stumps collected 

183 from the top of peat layer 6 in units T0214, T0314, T0315 and T0415 were identified 

184 at species level at the Institute of Archaeology, Chinese Academy of Social Science.

185  Samples for organic carbon measurement were dried at 40˚C in an oven and 

186 milled to powder. Two aliquots were prepared for each sample: (1) 20 mg powder 

187 was used to measure total carbon and total nitrogen (TN) using a vario MAX cube CN 

188 analyser (Elementar, Germany) (error <1%) at the State Key Laboratory of Marine 

189 Geology, Tongji University, China; (2) about 0.5 g powder was mixed with 0.1 M 

190 hydrochloric acid (HCl) for 24 hours to remove carbonate and then washed with 

191 deionized water thoroughly until the pH was neutral. The neutral specimen was dried 

192 at 40˚C and then used for measurement of TOC by vario MAX cube CN analyser 

193 (error <1%) at Tongji University and δ13CV-PDB‰ (error, ±0.2‰; reference material: 

194 Urea and Acetanilide) by Delta V Advantage Isotope Ratio Mass Spectrometer 
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195 (Thermo Scientific, Germany) at the Third Institute of Oceanography, State Oceanic 

196 Administration of China. Samples for diatom analysis were prepared at 

197 Loughborough University in a water bath using 30% H2O2 to remove organic matter 

198 and HCl to remove carbonates, following the procedure of Renberg (1990), and 

199 permanent slides counted on a Leica DME light microscope (numerical aperture = 

200 1.4) under oil immersion and phase contrast at x1000 magnification. Samples for 

201 dinoflagellate cysts identification were treated following standard procedures of 

202 pollen analysis (Moore et al., 1990) and the species were counted using a Leica 

203 optical microscope at x400 magnification. The identification of dinoflagellate cysts 

204 was made according to regional taxonomic guides (He et al., 2009; Mao et al., 2011; 

205 Tang et al., 2013). 

206 For building the chronology, eight samples of charcoal, plant fragment and 

207 organic sediment from units T0410 and T0513 were AMS 14C dated by Beta Analytic, 

208 USA, and calibrated using the Calib 7.1 program (Stuiver et al., 2015; Table 2). 

209 Furthermore, a sample from the sand ridge above the peat layer in T0513 (Fig. 3E) 

210 was dated using single-grain optically stimulated luminescence (OSL) measurement 

211 of quartz (Duller, 2008). In total, 3500 grains of quartz (180−224 µm) were measured 

212 and 37 grains were accepted for age determination (Table 3; Fig. S1). Luminescence 

213 measurements were carried out by an automated Risø-TL/OSL DA-20 DASH reader 

214 equipped with a 90Sr/90Y beta source (Bøtter-Jensen et al., 2003) and an ET EMD-

215 9107 photomultiplier tube at the State Key Laboratory of Estuarine and Coastal 

216 Research, East China Normal University.
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217 We also decided to use the south excavation wall of unit T0513 and west wall of 

218 unit T0410 for relative sea level reconstruction. In the south wall of unit T0513, the 

219 Holocene base of hardened mud dips gradually from west to east while peaty mud 

220 layer 9 and peat layer 6a formed the basal peat from east to west, respectively (Fig. 

221 2B). In the west wall of unit T0410, as the thick layer of peat (layer 6) was eroded 

222 away and the sedimentary sequence above the Holocene base is only ~150 cm thick in 

223 the north part (Fig. 2C), sediment compaction can be neglected when applying the 

224 sea-level indicators from this profile. When collecting the radiocarbon dating 

225 material, three sample from layers 9, 8 and 6 in unit T0513, and three samples from 

226 layers 7, 4 and 3 in unit T0410 were chosen for reconstruction of relative sea levels 

227 (Fig. 2B, C; Table 4). We used the basal peat and stratigraphic approach to determine 

228 the palaeo-relative sea levels after identification of these sea-level indicators (Wang et 

229 al., 2013; Shennan et al., 2015). We used a total station to measure the elevation of 

230 the Holocene base in units T0410 and T0513, where samples of sea-level indicators 

231 were collected. We further used the tidal levels calculated from the records of Zhenhai 

232 gauge station (Fig. 1B) during AD 1958–1980 because a previous study simulated 

233 little change in the tidal range for the coast of Yaojiang Plain from the middle 

234 Holocene (6 ka) to the present day (Uehara et al., 2002). As a present-day, high-

235 resolution topographic dataset (http://www.gscloud.cn) demonstrates that the present-

236 day freshwater marsh mostly develops at ~0–0.5 m above the mean spring high water 

237 (MSHW) in the Yaojiang plain, freshwater marsh habitat inferred from palaeodata 

238 was therefore considered to be 0–0.5 m above the MSHW (Table 4). 

http://www.gscloud.cn
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239 In addition, we collected and recalibrated 80 published radiocarbon ages (Table 

240 S1) during and after the Liangzhu culture from Neolithic sites across the East China 

241 coastal plain using the Calib 7.1 programme (Stuiver et al., 2015) to revise the time 

242 span of the Liangzhu culture. We also compiled all published sedimentary profiles 

243 dated by AMS 14C in the study area (Fig. S2 for their location) and compared the 

244 database covering the end of the Liangzhu culture which included radiocarbon ages 

245 (also recalibrated; Table S2), ecological and environmental proxies, and signals of 

246 flooding (Table 5).

247

248 4. Results

249 4.1 Holocene stratigraphy and sedimentary environmental change at Yushan

250 There is clear variation in organic geochemistry in each layer, distinguishing the 

251 terrestrial or marine source of organic carbon (Fig. 4). Diatom preservation is poor 

252 throughout much of the sequence, and identifiable valves were only observed in 

253 layers 9, 8 and 6, and in a single sample of layer 5. Such preservation problems are 

254 typical for coastal sediments (Ryves et al., 2004). By contrast, dinoflagellate cysts of 

255 marine genera including Spiniferites, Operculodinium and Lingulodinium were found 

256 in the non-cultural layers of 8, 5 and 4 and the bottom section of layer 3. Below we 

257 present the results of chronology, stratigraphic patterns of proxies and interpretation 

258 of sedimentary environments of layers 10–2.

259 Layer 10 (mud before the early Hemudu culture). Levels of TOC and TN are 

260 generally low (<1% and <0.2%, respectively; Fig. 4A) and values of TOC/TN and 
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261 δ13C indicate that the dominant source of organic carbon was freshwater algae or 

262 freshwater particulate organic carbon (POC) (Fig. 4B; Lamb et al., 2006). A 

263 terrigenous environment is thus inferred for the Yushan site before the settlement of 

264 Hemudu people. 

265 Layer 9 (early to middle Hemudu culture). A charcoal sample from this peaty 

266 mud layer was dated to 4440–4540 BCE (median age 4490 BCE; Table 2), which is in 

267 agreement with the artefacts of early to middle Hemudu culture found in this layer. 

268 TOC increases to ~5%; δ13C analyses indicate that the organic carbon was derived 

269 from terrestrial C3 plants and freshwater POC or algae (Fig. 4A, B). Diatoms are 

270 sparse in the bottom samples of this layer, consisting of robust, freshwater benthic 

271 forms. The middle sample in this section contained several whole cells of Amphora 

272 copulata, a benthic species more typical of higher conductivity freshwaters. The 

273 presence of whole cells suggests that the diatoms were growing in situ, rather than 

274 transported to the site, implying shallow water. Subsequent samples at the top of this 

275 layer 9 included taxa typical of somewhat fresher, low nutrient and lower pH waters, 

276 such as Eunotia and Pinnularia, along with some elongate Fragilaria. No marine 

277 dinoflagellate cysts was observed. A coastal freshwater marsh environment was 

278 identified during the early to middle Hemudu period. 

279 Layer 8 (artefact-absent mud covering the early to mid-Hemudu cultural layer). 

280 A radiocarbon age of 4310 BCE (4260–4360 BCE) was obtained from a sample of 

281 plant fragments in the bottom section of this layer. TOC decreases sharply (<1%) and 

282 its isotopic composition demonstrates a terrestrial origin (Fig. 4B). However, a few 
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283 valves of marine coastal taxa (such as Rhaphoneis) were encountered (Fig. 4A). 

284 Furthermore, of the four samples analysed, the uppermost sample had no marine 

285 dinoflagellate cysts, while concentrations for the other three were 332, 78 and 365 

286 cysts g−1 dry weight (dw). An upper tidal flat environment was thus inferred at the site 

287 after the end of the middle Hemudu culture.

288 Layer 7 (late Hemudu culture). Radiocarbon dating of charcoal from this organic-

289 rich mud layer gives an age of 4020 BCE (3945–4170 BCE; Table 2), supporting the 

290 finds of artefacts of late Hemudu culture found in this layer. Organic carbon was 

291 derived from freshwater algae or POC and some terrestrial C3 plants (Fig. 4B). Only 

292 two samples contained marine dinoflagellate cysts among five samples in layer 7, 

293 with concentrations of 53 and 582 cysts g−1 dw. These data indicate a saltmarsh 

294 environment during the late Hemudu culture.

295 Layer 6 (Liangzhu culture). Radiocarbon ages from two samples from the bottom 

296 and upper section of this layer are 3570 BCE (3515–3640 BCE) and 2760 BCE 

297 (2635–2880 BCE), respectively (Table 2; Fig. 3A), which is consistent with the 

298 Liangzhu artefacts found in this layer. Rooted in situ at the top of this peat layer are 

299 many tree stumps at the edge of the excavation area (Fig. 3B, C), all of which have 

300 been identified as mature willow (Salix; ~12–25 cm in diameter; 1–6 trees per 

301 excavation unit of 100 m2). This shrub is typical of the natural Yangtze coastal 

302 freshwater marsh, a zone located above MSHW (Zong et al., 2007; 2011). Both TOC 

303 and TN increase steadily throughout layer 6, reaching values of almost 21% (TOC) 

304 and 1% (TN). Values of δ13C of approximately –28‰ and TOC/TN >15 imply that 
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305 this OC was dominantly derived from terrestrial C3 plants. Furthermore, a diverse 

306 flora of diatoms typical of shallow, freshwater/slightly brackish conditions appeared, 

307 including species of Cymbella, Amphora, Gyrosigma, Nitzschia and Navicula. Higher 

308 up the sequence, taxa typical of more distinctly brackish conditions were also found, 

309 including Ctenophora pulchella, Rhopalodia gibba and Chaetoceros cysts, as well as 

310 more clearly freshwater and low alkalinity taxa (Eunotia, Pinnularia, Cocconeis), 

311 suggesting a mixture of shallow wetland, freshwater and coastal marine habitats in the 

312 vicinity of the site. No marine dinoflagellate cysts was found. A coastal freshwater 

313 marsh close to the MSHW is inferred during the Liangzhu culture.

314 Layer 5b (gravelly sand, sand or sand-mud mixture cutting into the Liangzhu 

315 peat). The sedimentary composition of the sand ridge consisting of gravel, sand and 

316 fragments of the Liangzhu artefacts indicates strong hydrodynamic force during its 

317 formation. A radiocarbon age of 2760 BCE was derived from the plant fragments 

318 within the sand ridge, being identical with that of the underlying peat (Table 2), 

319 reflecting reworking from the peat. This sand ridge cutting into the peat layer, 

320 together with the sedimentary architecture including the erosional surface and tree 

321 stumps at the top of the underlying peat layer, reflect strong erosion and sudden 

322 deposition during a major storm event. Previous studies has reported similar 

323 deposition facies and sequences during storm events, such as the development of 

324 chenier ridges on the tidal flat of the Yangtze coast (Yan et al., 1989). OSL dating of 

325 single quartz grains within the sand ridge yielded an age of 4.59±0.24 ka BP (with a 

326 central age of 2575 BCE; Table 3). 
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327 Layer 5a (artefact-absent mud covering the Liangzhu layer). Similar to layer 8 

328 which overlies the early to mid-Hemudu peat, layer 5a of homogenous mud overlays 

329 the Liangzhu peat in many units. At the bottom of this layer, TOC also abruptly 

330 declines to <1% similar to the change from layer 9 to layer 8, with a simultaneous 

331 dramatic increase in δ13C (to –20.66‰) and a decrease in TOC/TN to <8 (Fig. 4A), 

332 implying that this organic matter was derived from marine algae or marine POC (Fig. 

333 4B). In the upper part of layer 5, TOC increases slightly and δ13C shifts to the 

334 freshwater algal or POC range, indicating a short period of desalinisation. Some valve 

335 fragments of marine plankton (such as large Coscinodiscus) were encountered in one 

336 sample. Concentration of marine dinoflagellate cysts were abundant (~700–1500 g−1 

337 dw) in the whole section. Coastal marine sediment is thus inferred for this layer. We 

338 argue that this layer also represents the deposits of the storm event, due to its very 

339 high sedimentation rate compared to other layers, and the desalinisation signal 

340 inferred from the organic carbon source in the upper part (Fig. 4A). We suggest this 

341 mud layer was formed by rapid settling of suspended sediments after the storm, which 

342 reworked fine-grained sediments from offshore areas and transported these onshore. 

343 The increase in terrestrial organic carbon input in the upper section is an indication of 

344 the large amount input of freshwater discharge caused by intense precipitation 

345 associated with the storm.

346 Layer 4 (artefact-absent mud). An age of 2335–2495 BCE was derived from the 

347 bottom of this layer. TOC drops further and was dominated by marine POC or 

348 bacterial OC (Fig. 4). Some unidentifiable girdle bands of a large centric diatom, 
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349 probably a marine planktonic species, was found in one sample. Concentration of 

350 marine dinoflagellate cysts is high (500–1500 g−1 dw). Together with the lithological 

351 feature of silt lamination, we suggest an upper tidal-flat environment during the 

352 formation period of layer 4.

353 Layers 3 (Shang to Zhou dynasty) and 2 (Tang to Song dynasty). The radiocarbon 

354 age of charcoal is 1395–1500 BCE at the bottom of this section, which together with 

355 artefacts of Shang to Song dynasties, provides firm evidence that these two layers 

356 were formed during the historical period. TOC/TN increased in layers 3 and 2, and 

357 OC is dominated by freshwater algae and the POC contains a signal of terrestrial C3 

358 plants (Fig. 4B). There are some marine dinoflagellate cysts (476 cysts g−1 dw) in the 

359 base of layer 3, indicating a saltmarsh environment at the beginning of Shang dynasty 

360 and a freshwater environment thereafter.

361 From the results of these multiproxy analyses of organic carbon sources, marine 

362 microfossils and the occurrence of human cultural layers, we speculate that humans 

363 settled at the Yushan site during periods when coastal freshwater marsh or saltmarsh 

364 environment prevailed over the last ~6500 years. However, such settlement was 

365 interrupted by two marine intrusion events, corresponding to the interruption of the 

366 Hemudu and termination of the Liangzhu culture during ~4310–4020 BCE and 2575–

367 1450 BCE, respectively. Note that the later event was characterized by a major storm 

368 event at its beginning, a storm that was strong enough to erode away the peat layer 

369 and form a sand ridge.

370
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371 4.2 Ages of the storm event and the terminal of Liangzhu culture

372 The OSL dating of quartz grains gives a direct age of 2575 ± 240 BCE for the 

373 sand ridge. However, a narrower age span is necessary to discuss the linkage between 

374 coastal flooding and the Neolithic culture. As the top of the peat unit at Yushan was 

375 eroded away by the storm in many units (Figs. 2, 3) or possibly lost due to human 

376 land use such as building an artificial platform (Table 1), we are unable to determine 

377 directly the age when the coastal marsh was inundated and buried by the marine 

378 sediments. We therefore compared the ages obtained from the rice field profiles at the 

379 Tianluoshan (TLS) site, which is only ~20 km away from Yushan and is located 

380 inland and surrounded by highland (Fig. 1B). At the TLS site, the top of the 

381 corresponding peat bed formed during the Liangzhu period is non-erosively preserved 

382 and dateable (Zheng et al., 2012). This implies that this site was protected from the 

383 storm erosion and only drowned by the sea water. Thus, the buried peat top should 

384 represent the original depositional surface of the coastal marsh. Two samples of seeds 

385 from different trenches from the peat top of the TLS site resulted in the same age of 

386 2540 BCE (14C ages of 4015 ± 45 and 4020 ± 40 yr BP, respectively, Table 2). This 

387 corresponds very well with the Yushan profile, both in terms of the stratigraphy and 

388 the age of the marine inundation as dated by OSL (2575 BCE; Table 3). From these 

389 two reliable and independent lines of chronological evidence which give  a range of 

390 2540–2575 BCE for the central age, we therefore consider that the most likely date of 

391 the storm to be ~2560 ± 100 BCE (the range of ± 100 years was decided according to 

392 the error of radiocarbon dating).
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393 The Liangzhu people abandoned the Yushan site immediately after the storm 

394 event. Our compilation of radiocarbon ages of other sites across the south Yangtze 

395 coastal plains further demonstrates that the terminal age of the Liangzhu culture was 

396 at approximately 2500 BCE (Fig. 5), when the Liangzhu people abandoned their state 

397 capital complex (Zhang et al., 2015; Wang et al., 2017). Thus, the Liangzhu culture 

398 ended only decades after the Yushan storm. The subsequent Qianshanyang and 

399 Guangfulin cultures both lasted only for ~300 years, much shorter than the Liangzhu 

400 culture (Fig. 5).

401

402 4.3 Relative sea-level change from 4500 to 1500 BCE

403 The deposits of saltmarsh and freshwater marsh of layers 7 and 6, respectively 

404 imply that relative sea level dropped from −0.78 ± 0.22 m to −1.10 ± 0.25 m during 

405 the period from late Hemudu (3945–4170 BCE) to Liangzhu culture (2635–2880 

406 BCE; Table 4; Fig. 6). We further interpolated an indicator of the peat top from the 

407 west part of unit T0513, where weak erosion of the peat occurred, and ~30-cm thick 

408 peat exists above the Holocene base (Fig. 2B). An original ~40-cm thickness of the 

409 peat was estimated using the highest estimation of percentage (30%) of peat 

410 compaction with an overburden of 1 m (van Asselen et al., 2011). Thus, the original 

411 altitude of the peat top and the relative sea level was estimated to be at 1.16 m and 

412 −0.70 ± 0.25 m, respectively (Table 4) when the storm occurred at 2560 ± 100 BCE. 

413 The upper tidal flat facies of layer 4 indicates a high relative sea-level stand at ~0.25 ± 

414 0.27 m at 2335–2495 BCE while the saltmarsh sediments of layer 3 indicate the sea 
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415 level was at ~0.05 ± 0.22 m at 1395–1500 BCE. These data suggest an acceleration in 

416 relative sea-level rise during the late stage of Liangzhu culture and a slight drop of the 

417 sea level from ~2440 BCE. In addition, a rapid relative sea-level rise also occurred 

418 from −1.49 ± 0.25 m to −0.45 ± 0.27 m from 4440–4540 BCE to 4260–4360 BCE, 

419 inferred from the basal peat layer 9 and the marine-originated homogenous mud layer 

420 8, respectively (Figs 2B, 4; Table 4). Similarly, this earlier acceleration of sea-level 

421 rise occurred during the cultural interruption period between early to mid-Hemudu 

422 and late Hemudu cultures (Fig. 6).

423

424 5. Discussion

425 5.1 Flooding signatures across the south Yangtze coast

426 From these multiproxy and independent lines of evidence, we speculate that a 

427 major coastal storm occurred at ~2560 ± 100 BCE, which not only overwhelmed the 

428 Yushan site directly, but was strong enough to erode away ~30-cm thick peat (Fig. 3). 

429 This storm was followed by long-lasting marine inundation and the development of a 

430 brackish tidal flat owing to relative sea-level rise, which led to human abandonment 

431 of the area for ~1000 years until ~1625 BCE (Figs. 4, 6). The brackish wetland 

432 ecosystem was characterised by low primary productivity, bacterial-dominated OC 

433 and low terrestrial OC input, probably with limited biomass production, and was 

434 unlikely to support significant human populations during the high sea-level stand of 

435 2440–1625 BCE (Fig. 4). Although the wetland had become less saline by the time of 

436 the subsequent Shang, Zhou, Tang and Song dynasties (layers 2 and 3), we infer from 
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437 the geochemical data (especially TOC% and TOC/TN) that primary productivity was 

438 far lower than it had been during the Liangzhu period (Fig. 4A).

439 Comparisons with the data available from previous studies of the south Yangtze 

440 coast (Fig. 6; Table 5) reveal the extent of this coastal flooding in response to the 

441 accelerated sea-level rise during the later stages of Neolithic culture. As expected, a 

442 strong saline event occurred at ~2540 BCE at sites within the Yaojiang plain (cf. at 

443 TSL; Zheng et al., 2012), but it is also clearly seen 140 km west (at KHQ; ZPICRA, 

444 2004; Fig. 6). A slight increase in salinity (reflected by increase in the abundance of 

445 saline Chenopodiaceae) was also seen at the Liangzhu site close to the state capital 

446 (Table 5). The marine flooding likely did not extend across the Taihu Plain, which 

447 also had some protection from substantial chenier ridges to the east (Fig. 1), but there 

448 is evidence of a salinization event at the same time at sites ZX-1, TMC (Fig. 6) and 

449 Guangfulin (Table 5) close to the shoreline. At most other sites, an increase in local 

450 water level was reported at the end of the Liangzhu period (Table 5), implying inland 

451 flooding from storm rainfall or waterlogging due to sea-level rise.

452

453 5.2 Causes of the mid-Holocene coastal flooding

454 Our reconstruction of relative sea level demonstrated a rapid rise (~0.95 m in 

455 ~120 years; Table 4) at the final stage of the Liangzhu culture (Fig. 6). The amplitude 

456 of this rise could be slightly overestimated because of the uncertainty in the height of 

457 the top of the peat and the underestimation of its compaction. We also did not 
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458 consider the enlargement of the tidal range because previous simulations 

459 demonstrated little change in the amplitude of the M2 tide in the south east Hangzhou 

460 Bay during the middle to late Holocene (Uehara et al., 2002). As previous studies 

461 further suggest no major deposition or shoreline advance during the middle Holocene 

462 along the Hangzhou Bay (Yan et al., 1989; Gao and Collins, 2014; Zhang et al., 

463 2015), we infer no significant change in tidal levels after the Yushan storm ~4500 

464 years ago.

465 This accelerated relative sea-level rise is consistent with sea level records from 

466 other regions around the world, and adds to evidence that this rise may reflect a global 

467 signal, rather than resulting from local processes. For example, on the coast of 

468 Peninsular Malaysia, the relative sea level dropped slightly from 3500 to 2500 BCE 

469 and then rose suddenly by ~1–3 m from ~2500 to 2100 BCE (Tjia, 1996; Horton et 

470 al., 2005). Rapid relative sea level rise between 2650 and 2350 BCE was also reported 

471 from the coast of north-eastern Brazil (~1 m; Suguio et al., 2013) and the northern 

472 Gulf of Mexico (Balsillie and Donoghue, 2011). In the mid-Pacific Ocean, microatolls 

473 record a relative sea level rise beginning at ~2500 BCE, following slightly declining 

474 or stable levels over the previous ~1500 years (Woodroffe et al., 2012). The eustatic 

475 sea level curve reconstructed from Red Sea corals shows that sea level began to rise at 

476 ~2300 BCE, following stable or declining levels over the previous ~900 years (Siddall 

477 et al., 2003). These data imply a small but significant acceleration in global sea level 

478 rise in the middle of the third millennium BCE. 
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479 In addition, Meltzner et al. (2017) reported a half-meter sea level excursion on 

480 centennial timescales between 6850 and 6500 cal yr BP from the microatolls of the 

481 Sunda Shelf, which indicates that the regional relative sea-level change could be a 

482 highly fluctuating pattern along the west coast of the Pacific Ocean. We infer that the 

483 rapid rise of relative sea level at Yushan ~4500 years ago, together with the earlier 

484 rise ~6300 years ago (Fig. 6) have similarity with the records in the microatolls of the 

485 Sunda Shelf. Furthermore, the record of the Asian summer monsoon shows a small 

486 peak in activity from ~2600–2450 BCE (Fig. 6; Wang et al., 2005). A comparison of 

487 values between the Dongge Cave δ18O, a proxy for the relative strength of the Asian 

488 summer monsoon, and atmospheric Δ14C, a proxy for solar activity, revealed that the 

489 monsoon peak coincided with the peak in solar irradiance from ~2600 to 2400 BCE 

490 (Stuiver, 1998; Wang et al., 2005). From these data, we infer that this small monsoon 

491 intensity peak was driven by increasing solar activity and hence was a climate-

492 warming event on a centennial timescale. Therefore, we suggest that accelerated 

493 global sea-level rise occurred against a backdrop of climate warming during the late 

494 stage of the Liangzhu culture.

495 Previous studies suggested that a key feature of accelerated rising sea level is that 

496 the return periods of flood events decrease as the sea level increases (Sweet et al., 

497 2014; Tessler et al., 2015). We thus suggest that the catastrophic storm at Yushan 

498 marked the beginning of a period of frequent flooding across the Yangtze coast, likely 

499 including other major coastal and inland flooding events, as supported by evidence of 
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500 flood deposits in the coastal lowland of Hangzhou Bay and increasing freshwater 

501 levels across the Taihu Plain (Fig. 6; Table 5). 

502

503 5.3 Impacts of the coastal flooding on the Liangzhu human society

504 We argue that perhaps only over a few decades, the combined effect of a series of 

505 extreme events and flooding, such as the Yushan inundation, could have 

506 overwhelmed even a politically advanced, technologically capable and well-organised 

507 prehistoric society such as the Liangzhu. Frequent extreme events and flooding would 

508 have had profound impacts, both immediate and longer-term. The coastal storm 

509 recorded at Yushan at 2560 BCE and associated flooding (including inland river 

510 flooding from storm rainfall) would have destroyed settlements and infrastructure 

511 across the region, as seen in the archaeological record at Yushan (Fig. 3). In the 

512 Yaojiang Plain, the immediate aftermath of marine flooding would have killed 

513 freshwater wetland plant communities that could not tolerate higher salinity and thus 

514 ended rice cultivation (Zheng et al., 2012); low net biomass production under 

515 marine/brackish conditions (Fig. 4A) would be unlikely to support significant human 

516 populations. At the head of Hangzhou Bay, coastal flooding also inundated the late-

517 Liangzhu rice paddies such as at Maoshan (~30 km away from the Mojiaoshan, Fig. 

518 1), notwithstanding it was designed with artificial ditches to facilitate water 

519 management (Zhuang et al., 2014). The political centre of Mojiaoshan was not only 

520 threatened directly by the salt intrusion and frequent flooding (Liu and Chen, 2012; 
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521 Zhuang et al., 2014; Table 4), but also could have learned lessons from the flooding of 

522 inundated sites in the Yaojiang Plain.

523  Furthermore, although societal and demographic recovery from a single extreme 

524 event could have happened after the Yushan storm (e.g. during freshening seen in the 

525 upper section of layer 5; Fig. 4A), frequent flooding would have made this much more 

526 difficult, for example by ruining stored rice seeds or from persistent and widespread 

527 crop failure (Stone, 2009). This would quickly result in a shortage of surplus 

528 production needed to support the political centre, and the large number of artisanal 

529 workers not employed in food production, such as jade workers (Liu and Chen, 2012). 

530 It is possible that the Liangzhu ruling political elite could have moved the state capital 

531 away from the coastal lowland as an adaptive strategy to mitigate the impacts of rising 

532 sea level and increasing flooding, potentially explaining the appearance of the 

533 subsequent, but less organised and less developed (yet culturally related), 

534 Qianshanyang culture. Owing to its profound impacts on the landscape and people, 

535 this period of flooding, including the Yushan storm at 2560 BCE, may even have 

536 contributed to the ancient oral flood traditions in the Lower Yangtze, forming the 

537 cultural setting for the legend of China’s Great Flood more than 4000 years ago 

538 (Lewis, 2006). 

539

540 6. Conclusions

541 From the sedimentary record at the Yushan archaeological site, and combined 

542 evidence from other sites in the south Yangtze coastal plain, we conclude that major 
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543 coastal flooding occurred at the late stage of the Liangzhu culture. This flooding was 

544 characterized by extreme events, and was caused by short-term but significant 

545 acceleration in sea-level rise, which was possibly linked to a climate warming event 

546 on a centennial timescale. We suggest that the frequent extreme events and 

547 catastrophic flooding during warming climate phases are controlling factors in 

548 explaining Neolithic cultural transitions in the middle Holocene in the Yangtze 

549 coastal lowland, including the sudden and perplexing demise of the technologically 

550 advanced Liangzhu culture. Our finding of this catastrophic coastal flooding at the 

551 middle of third millennium BCE provides an analogue for flood risk, owing to the 

552 predicted high rate of sea level rise at the end of 21st century (Nerem et al., 2018) and 

553 urgently calls for mitigation strategies to be put in place to protect vulnerable coastal 

554 populations worldwide against a similar scenario of abrupt sea level rise in the near 

555 future.
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770 Table 1 A summary of the archaeological sequence at Yushan site (Figs 2, 3).
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771 Table 2 AMS 14C ages and their calibrations for the Yushan and Tianluoshan sites.

772 Table 3 Single-grain OSL age for the sand ridge sample from the Yushan site 

773 together with supporting dose rate and equivalent dose (De) data.

774 Table 4 Reconstruction of relative sea levels using sea-level indicators obtained from 

775 units T0410 and T0513 (Fig. 2B, C). Sedimentary facies was determined according to 

776 the lithology, organic carbon, diatom assemblage and dinoflagellate cysts. Tidal levels 

777 were collected from the Zhenhai gauge station (Fig. 1; 1958–1980). MSHW, 1.61 m; 

778 MHW, 1.17 m; MNHW, 0.63 m. All heights are given with respect to current mean 

779 sea level (Yellow Sea datum). Abbreviations: MSHW, mean spring high water; 

780 MHW, mean high water; MNHW, mean neap high water. 

781 Table 5 Sediment profiles with high-resolution AMS 14C ages from the Taihu and 

782 Yaojiang Plains and head of the Hangzhou Bay, East China coast. Locations of these 

783 profiles are indicated in Fig. S2.

784

785 Figure legends

786 Figure 1 Location maps. (A) East Asia and the location of the study area. (B) The 

787 south Yangtze coastal plain, showing the locations of the Liangzhu sites and all sites 

788 for which radiocarbon dates for the Liangzhu and post-Liangzhu cultural layers were 

789 available. These sites are numbered in sequence according to their distance from the 

790 Yushan site (Table S1). Note that the Liangzhu settlements are distributed mainly on 

791 the Taihu Plain of the southern Yangtze Delta plain and the Yaojiang Plain on the 

792 south east bank of Hangzhou Bay. (C) The flooding to a depth of >0.5 m across most 

793 of the Yaojiang Plain caused by Typhoon Fitow (the strongest typhoon to make 



37

794 landfall in China for over 60 years), October 2013 (data source: Ningbo gauge station, 

795 2013. http://www.nbswz.com.cn/Html/201405/26/11669.html). (D–F) Typical 

796 artefacts of the Liangzhu culture discovered from the Yushan site, now deposited in 

797 Ningbo Municipal Institute of Cultural Relics and Archaeology. (D) Stone cutter (Shi 

798 Dao); (E) stone woodworking tool (Youduan Shi Beng); (F) black pottery two-lugged 

799 necked jar (Shuangbi Hu), with some remains of black slip. The maps were generated 

800 with the ArcGis 10.1 software (www.esrichina.com.cn) using the topographic dataset 

801 provided by the International Scientific & Technical Data Mirror Site, Computer 

802 Network Information Centre, Chinese Academy of Sciences (http://www.gscloud.cn).

803 Figure 2 (A). Aerial photo of the Yushan site during excavation. (B) Photo of the 

804 south wall of unit T0513. Numbers represent the cultural layers. Note layers 8 and 9 

805 pinch out and disappear westward due to the basal topography, making layer 6 the 

806 Holocene basal peat in some sections. (C) Photo of the west wall of unit T0410. 

807 Numbers represent the cultural layers. The data set of altitude and radiocarbon age are 

808 presented for each sea-level indicator in (B) and (C). Layers 8 and 9 also pinch out 

809 and disappear northward due to the basal topography, making layer 7 the Holocene 

810 basal sediments. Elevation of the Holocene bases in two units were measured by a 

811 total station. White arrows with elevation and calibrated ages (BCE) represent data 

812 used for reconstruction of relative sea level. Numbers of cultural layers: 2, Tang to 

813 Song dynasties; 3, Shang to Zhou dynasties; 4–5, natural deposits; 6a–6b, Liangzhu 

814 period; 7, late Hemudu period, missing in these units; 8, natural deposits; 9, early to 

815 middle Hemudu period; 10, pre-Hemudu natural deposits.

816 Figure 3 Photographs of strata at Yushan. (A) Excavation unit T0513, showing the 

817 sediments deposited since the pre-Hemudu period and the erosional surface above the 

http://www.esrichina.com.cn
http://www.gscloud.cn
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818 peat layer of the Liangzhu period. (B–C) Tree stumps on the tops of the peat layers in 

819 T0213 and T0214. (D) Sand ridge in T0415. (E–F) Sand ridge in T0513. 

820 Figure 4 Environmental change and human responses at Yushan. (A) 

821 Stratigraphic patterns of total nitrogen (TN), total organic carbon (TOC), TOC/TN, 

822 bulk organic carbon stable isotopic composition (δ13C), dinoflagellate cysts, diatoms 

823 (N = none, F/B = freshwater/brackish; M = marine; detailed information in Table S4) 

824 and sedimentation rates (SR) in different cultural layers (2–10). The numbers used for 

825 the cultural layers are the same as in Fig. 3. Ages with stars (*) were calculated based 

826 on sedimentation rates. (B) Discrimination of organic carbon sources based on 

827 TOC/TN and δ13C (adapted from Lamb et al., 2006). 

828 Figure 5 Time span of the Liangzhu (Group 1), Qianshanyang (Group 2), 

829 Guangfulin (Group 3) cultures and post-Liangzhu natural deposits in Yaojiang 

830 plain (Group 4). Note the end of the Liangzhu culture is around 2500 BCE. Also 

831 indicated is the OSL age of the storm sand at the top of the Liangzhu cultural layer 

832 (boundary of layer 5/6a; Fig. 3). Site number ordered by distance from the Yushan 

833 site (Fig. 1; Table S1). Samples dated by AMS 14C are indicated in red. Others were 

834 dated by the radiometric method.

835 Figure 6 Comparison of the relative sea-level change and regional marine 

836 flooding records on the south Yangtze coast from the Yaojiang and Taihu plains 

837 and the head of Hangzhou Bay. In the sea-level curve, calibrated radiocarbon ages 

838 are presented with error bars of 2σ; horizontal error bars represent the indicative 

839 meaning (range of relative sea level) of each sea-level indicator. The interpolated data 

840 point is calculated from the data set derived from the estimated storm age and original 

841 peat top (Table 4; see text for details). Sediment profiles are numbered as in Fig. S2 

842 (with increasing distance from Yushan); data sources are given in Tables 4 and S2. 
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843 The oxygen isotopic record (δ18O) of stalagmite DA from Dongge Cave (the cave 

844 location is marked in Fig. 1A; Wang et al., 2005) denotes a short period of 

845 strengthening, yet variable, Asian summer monsoon linked to the warming climate 

846 (denoted by the red arrow) during the latter stages of the Liangzhu culture. 

847

848

849

850

851

852

853

854

855

856

857

858

859

860
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861 Table 1 A summary of the archaeological sequence at Yushan site (Figs 2, 3).

Cultural 

layer

Description of lithology Archaeological finds Cultural period

1 Cultivated layer. None Present-day

2 Yellowish earth. Yue Kiln Tang and Song

3 Dark grey or yellowish grey mud. Pottery vessels, early proto-celadon, bronze ware, stone and wood 

tools

Shang and Zhou

4 Yellowish grey mud with some very thin (<1 mm) 

laminations of silt and abundant root traces.

None Cultural interruption

5a Grey homogeneous mud with an unconformity with the 

underlying layer 6.

None Cultural interruption

5b Gravelly sand, sand or mixture of sand and mud. Some fragments of Liangzhu artefacts. Storm deposits

6 a, peat; b, peaty mud. On top of this peat layer, an 

erosional surface occurred and tree stumps exist in many 

units (Fig. 3A–C).

An artificial platform occurred at the edge of upland, containing 

pottery vessels, polished stone tools of axe, adze, plow, cutter, 

arrowhead, sickle and Mopan slab. Some artefacts were also found in 

the peaty mud and peat.

Liangzhu
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7 Organic rich mud Red pottery vessels, polished stone tools of axe, adze, chisel, arrow 

head and Mopan slab and jade.

Late Hemudu

8 Grey homogeneous mud. None Cultural interruption

9 Dark grey peaty mud Black pottery vessels, polished stone tools of axe and adze, bone awl 

and remains of architecture.

Early to middle Hemudu

10 Yellowish grey or grey homogeneous mud None Natural deposition before 

settling

862
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863 Table 2 AMS 14C ages and their calibrations for the Yushan and Tianluoshan sites. 

Field number Cultural 

period

Cultural 

layer

Dating 

material

δ13C Conventional 

age

Calibrated age 

(BCE)

Laboratory 

Number

(Fig. 3) (‰) aBP 2 sigma ProbabilityMedian

T0410-3c Shang 3 Charcoal −25.2 3170 ± 30 1395–1500 1 1450 414776

T0410-4 None 4 Plant 

fragments

−27.9 3940 ± 30 2335–2495 0.90 2440 414777

T0513-5* None 5 Plant 

fragments

−25.5 4170 ± 30 2635–2880 1 2760 406454

T0513-6a Liangzhu 6a Plant 

fragments

−30.3 4170 ± 30 2635–2880 1 2760 406455

T0410-6b Liangzhu 6b Organic 

sediments

−27.6 4770 ± 30 3515–3640 0.98 3570 414778

T0410-7 Late 

Hemudu

7a Charcoal −25.6 5210 ± 50 3945–4170 0.94 4020 414779

T0513-8-1 None 8 Plant 

fragments

NA 5470 ± 30 4260–4360 1 4310 406456

T0513-9 Early to 

mid- 

Hemudu

9 Charcoal −26.3 5640 ± 30 4440–4540 0.83 4490 406457

Tianluoshan† End of the 

Neolithic

− Seeds NA 4020 ± 40 2465–2635 0.98 2540 BA091045

Tianluoshan‡ End of the 

Neolithic

− Seeds NA 4015 ± 45 2455–2675 0.97 2540 BA07761

864 * This sample was collected from the sand ridge.

865 †, ‡ Ages for Tianluoshan were obtained from Zheng et al., (2009; 2012) and 

866 recalibrated using the Calib 7.1 program, as were other ages in the present study.
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867 Table 3 Single-grain OSL age for the sand ridge sample from the Yushan site together with supporting dose rate and equivalent dose (De) data.

868

Lab U

(ppm)

Th

(ppm)

K

(%)

Water 
content

Environmental dose rate* (Gy/ka) Over- De
† Age Calibrated 

calendar 

No. (%) Beta Gamma Cosmic-ray Total dispersion (Gy) ka age (BCE)

L144 3.5 ± 0.13 16.3 ± 0.39 2.01 ± 0.06 19 ± 5 1.77 ± 0.10 1.36 ± 0.07 0.18 ± 0.12 3.31 ± 0.12 0.18 ± 0.03 15.2 ± 0.57 4.59 ± 0.24 2575 ± 240$

869 * The dose rate and OSL ages were calculated using the 'DRAC' (Durcan et al., 2015).

870 † Single grains of quartz were measured in the regenerative-dose protocol, using a test-dose of 3.03 Gy, a preheat of 200 °C for 10 s, a 160 °C cut heat for 0 s, 
871 and green-laser stimulation at 125 °C for 0.9 s. The first 0.06 s of stimulation minus a background estimated from the integral of the last 0.1 s was used for 
872 single grain De calculation.

873 $ This calibrated calendar age was calculated by subtracting 2015 that is the sampling year of the sand ridge from the OSL-dated age 4.59±0.24 ka.

874

875

876

877

878

879

880
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Table 4 Reconstruction of relative sea levels using sea-level indicators obtains from units 

T0410 and T0513 (Fig. 2B, C). Sedimentary facies was determined according to the lithology, 

organic carbon, diatoms and dinoflagellate cysts. Tidal levels were collected from the 

Zhenhai gauge station (Fig. 1; 1958–1980). MSHW, 1.61 m; MHW, 1.17 m; MNHW, 0.63 m. 

All heights are given with respect to current mean sea level (Yellow Sea datum). 

Abbreviations: MSHW, mean spring high water; MHW, mean high water; MNHW, mean 

neap high water.

Alt. Cultural Sedimentary Calibrated Indicative Palaeo- Error 

Unit
(m) layer facies age (BCE) meaning

sea 

level 

(m)

(m)

T0410 1.44 3 Saltmarsh 1395–1500 MHW–MSHW 0.05 0.22

T0410 1.15 4 Upper tidal flat 2335–2495 MNHW–MHW 0.25 0.27

T0513 1.16† 6
Freshwater/

brackish marsh
2560*

0–0.5 m above 

MSHW
−0.70 0.25

T0513 0.76 6 Freshwater marsh 2635–2880
0–0.5 m above 

MSHW
−1.10 0.25

T0410 0.61 7 Saltmarsh 3945–4170 MHW–MSHW −0.78 0.22

T0513 0.45 8 Upper tidal flat 4260–4360 MNHW–MHW −0.45 0.27

T0513 0.37 9 Freshwater marsh 4440–4540
0–0.5 m above 

MSHW
−1.49 0.25

* This is the interpolated age, i.e., the age of storm event that drowned the peat layer.

† Calibrated value of the original peat top assuming that the peat layer above Holocene base in 

the west part of T0513 was ~30-cm thick, and had been compacted from an original ~40-cm 

thick layer, using the highest estimation of percentage (30%) of peat compaction with an 

overburden of 1 m (van Asselen et al., 2011).
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Table 5 Sediment profiles with high-resolution AMS 14C ages from the Taihu and Yaojiang Plains and head of the Hangzhou Bay, East China coast. 
Locations of these profiles are indicated in Fig. S2.

No. 
(Fig. 
1)

Name of site Dated period

(BCE unless 
stated as 
AD)

Number of 
dates from 
2000−3000 
BCE

Covering the 
end of 
Liangzhu 
culture (Y/N)

Ecological and 
environmental 
indicators at the end 
of Liangzhu culture 
(Y/N)

Proxy Signal of flooding Data source

1 Yushan 1450-4490 4+1 (OSL) Y Y (sedimentation 
rate:0.5−4 mm yr-1)

Lithology, 
sedimentology, 
organic 
geochemistry, 
diatom, macroflora

Storm and marine flooding Present study

2 Tianluoshan 
(TLS)

0-5080 2 Y Y Diatom, phytoliths, 
macroflora

Marine flooding Zheng et al., 
2016

3 Kuahuqiao 
(KHQ)

1160-9020 1 Y Y Lithology Marine flooding ZPICRA, 2004

4 Tangmiaocun 
(TMC)*

2730-4020 1 Y Y Diatom, rice 
phytoliths

Slight increase in salinity Zong et al., 
2011

5 ZX-1 685-6650 1 Y Y Pollen, foraminifera Marine flooding Stanley et al., 
1999; Chen et 
al., 2005
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6 Pingwang 860-5225 0 Y Limited data due to 
very low 
sedimentation rate 
(0.1 mm yr-1)

Pollen Increase in local water level Innes et al., 
2014

7 Luojiang/ 
Hemudu

AD 955-
8155

2 Y Hiatus inferred from 
the radiocarbon age  
(sedimentation rate: 
0.1 mm yr-1)

Pollen − Qin et al., 
2011

8 Wujiangbang 5435−6145 0 N N Pollen − Qin et al., 
2011

9 Qingpu AD 
170−3710

1 Y Y Pollen Increase in local water 
level†

Itzstein-Davey 
et al., 2007

10 Guangfulin‡ AD 
860−4360

1 Y Y Pollen Increase in local water 
level§ and increase in saline 
biota (Chenopodiaceae)

Chen, 2002; 
Atahan et al., 
2008; Wang et 
al., 2012

11 Siqian 4290−6160 0 N N Diatom − Zong et al., 
2011

12 Tinglin 4640−6250 0 N N Diatom, rice 
phytoliths

− Zong et al., 
2011

13 Longnan 2860−3580 1 Y Y Pollen Increase in local water level Zong et al., 
2012

14 Yuanjiadi 1920−4430 0 Y Y Pollen Increase in local water level Zong et al., 
2012
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15 Guoyuancun 1770−1850 0 N N Pollen − Zong et al., 
2012

16 Tianyilu 390−2080 0 N N Pollen − Zong et al., 
2012

17 Caoxieshan 1180−2790 1 Y Y Pollen Increase in local water 
level¶

Zong et al., 
2012

18 Chuodun 10−1440 0 N N Pollen − Zong et al., 
2012

19 Liangzhu 1120−5605 0 Uncertain due 
to no age 
constrain

Y Pollen Increase in saline biota 
(Chenopodiaceae)

Li et al., 2010

* The name “Tangcunmiao” in the original paper should be “Tangmiaocun”.

† Age-depth model determined by excluding results from old carbon. Increase in local water level is inferred from the increase in abundance of Typha and 
Triglochin-Potamogeton type and a decrease in Artemisia.

‡ There are two profiles at this site, one from Atahan et al. (2008) and the other (profile-1999) from Chen (2002).

§ Age-depth model of profile in Atahan et al. (2008) was determined by excluding results from old carbon (Wang et al., 2012). Increase in local water level is 
inferred from the increase in Typha abundance in both profiles. Increase in saline biota (Chenopodiaceae) abundance is seen in profile-1999 by Chen (2002).

¶ End of Liangzhu period is inferred from the abrupt decline in abundance of cultural NPPs at 0.6 m (their Figure 6a in Zong et al., 2012). Increase in local 
water level is inferred from the increase in abundance of open freshwater NPPs.
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36 Table S1 Neolithic sites (seeing Fig. 1 for their location) with 85 radiocarbon ages during and post the Liangzhu period, which we collected from all publications. 
37 Radiocarbon ages were recalibrated with the programme Calib 7.1, using a 14C half-life of 5568 years. This work is to revise the time span of the Liangzhu 
38 culture and results show that it ended at ~2500 BCE (Fig. 5).
39

Number in 
S.I. Fig. 1

Name of site Cultural layer Dating material Radiocarbon 
age (BP)

2 sigma 
Calibrated 
BCE

Prob. Median 
prob. (cal. 
BCE)

Data source Dating method

1 Yushan Natural deposit 
above Liangzhu 
layer

Plant fragment 3940±30 2335–2495 0.900 2440 Present study AMS 14C

3 Fujiashan Natural deposit 
above Liangzhu 
layer

Peaty mud 3955±35 2345–2570 1.000 2475 [1] AMS 14C

4 Tianluoshan Natural deposit 
above the rice field

Plant fragment 3760±40 2110–2290 0.813 2175 [2] AMS 14C

5 Xiangjiashan Disturbed layer 
above the Liangzhu

Wood 3990±130 2195–2880 0.986 2515 [3] Radiometric

8 Guangfulin Guangfulin − 3770±60 2025–2350 0.947 2195 [4] AMS 14C
8 Guangfulin Guangfulin − 3780±60 2030–2350 0.925 2210 [4] AMS 14C
13 Qianshanyang Guangfulin Wood 3545±35 1765–1975 0.994 1890 [5] AMS 14C
13 Qianshanyang Guangfulin Charcoal 3580±35 1875–2030 0.944 1935 [5] AMS 14C
13 Qianshanyang Guangfulin Charcoal 3775±35 2125–2300 0.922 2200 [5] AMS 14C
13 Qianshanyang Guangfulin Rice 3550±35 1770–1975 0.983 1895 [5] AMS 14C
13 Qianshanyang Guangfulin Seed 3580±55 1760–2045 0.962 1935 [5] AMS 14C
13 Qianshanyang Guangfulin Charcoal 3630±40 1890–2135 1 1995 [5] AMS 14C
13 Qianshanyang Guangfulin Bone 3635±35 1900–2130 1 2000 [5] AMS 14C
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13 Qianshanyang Qianshanyang Charcoal 3780±40 2120–2340 0.919 2205 [5] AMS 14C
13 Qianshanyang Qianshanyang Charcoal 3780±45 2115–2345 0.886 2210 [5] AMS 14C
13 Qianshanyang Qianshanyang Charred bamboo 3895±40 2280–2475 0.965 2380 [5] AMS 14C
13 Qianshanyang Qianshanyang Charred bamboo 3895±35 2285–2475 0.992 2385 [5] AMS 14C
13 Qianshanyang Qianshanyang Charcoal 3770±35 2125–2295 0.900 2190 [5] AMS 14C
13 Qianshanyang Qianshanyang Charcoal 3795±35 2135–2345 0.982 2230 [5] AMS 14C
13 Qianshanyang Qianshanyang Wood 3815±35 2140–2350 0.934 2255 [5] AMS 14C
13 Qianshanyang Qianshanyang Bamboo 3755±35 2040–2285 1.000 2170 [5] AMS 14C
13 Qianshanyang Qianshanyang Bamboo 3820±35 2190–2350 0.828 2265 [5] AMS 14C
13 Qianshanyang Qianshanyang Rice 3720±60 1945–2290 1.000 2120 [5] AMS 14C
13 Qianshanyang Qianshanyang Seed 3840±40 2200–2460 0.991 2305 [5] AMS 14C
13 Qianshanyang Qianshanyang Seed 4060±70 2465–2795 0.845 2620 [5] AMS 14C
13 Qianshanyang Qianshanyang Plant fiber 3960±50 2295–2580 1.000 2475 [5] AMS 14C
13 Qianshanyang Qianshanyang Seed 3905±75 2195–2575 0.982 2380 [5] AMS 14C
13 Qianshanyang Qianshanyang Bone 3910±40 2285–2490 0.980 2395 [5] AMS 14C
13 Qianshanyang Qianshanyang Bone 3820±35 2190–2350 0.828 2265 [5] AMS 14C
13 Qianshanyang Qianshanyang Burned earth 3800±40 2130–2350 0.935 2240 [5] AMS 14C
13 Qianshanyang Qianshanyang Bamboo 3675±40 1945–2145 0.960 2065 [5] AMS 14C
13 Qianshanyang Qianshanyang Charcoal 3800±40 2130–2350 0.935 2240 [5] AMS 14C
13 Qianshanyang Qianshanyang Charcoal 3750±40 2035–2235 0.881 2160 [5] AMS 14C
1 Yushan Liangzhu Tree stump 4210±30 2680–2900 1.000 2790 Present study AMS 14C
1 Yushan Liangzhu Tree stump 4240±30 2705–2910 1.000 2880 Present study AMS 14C
1 Yushan Liangzhu Plant fragments 4170±30 2635–2880 1.000 2760 Present study AMS 14C
1 Yushan Liangzhu Organic sediments 4770±30 3515–3640 0.980 3570 Present study AMS 14C
2 Cihu Liangzhu Wood 4790±85 3365–3710 1.000 3565 [6] Radiometric
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4 Tianluoshan Top of the Neolithic 
rice field

Seeds 4020±40 2465–2635 0.980 2540 [7] AMS 14C

4 Tianluoshan Top of the Neolithic 
rice field

Seeds 4015±45 2455–2675 0.970 2540 [1] AMS 14C

5 Xiangjiashan Liangzhu Wood 4115±90 2475–2890 1.000 2695 [3] Radiometric
6 Quemuqiao Liangzhu Wood 3995±95 2275–2780 0.905 2525 [8] Radiometric
7 Tinglin Liangzhu Charred wood 4320±70 2855–3120 0.885 2965 [9] Radiometric
8 Guangfulin Liangzhu Organic-rich mud 4110±30 2575–2865 1.000 2685 [10] AMS 14C
8 Guangfulin Liangzhu Organic-rich mud 4020±30 2470–2585 0.959 2530 [10] AMS 14C
9 Guoyuancun Liangzhu Wood 4080±100 2435–2895 0.973 2650 [9] Radiometric
10 Fuquanshan Liangzhu Charred wood 4730±80 3360–3655 1.000 3515 [11] Radiometric
11 Siqian Liangzhu Bamboo 4645±70 3325–3635 0.910 3445 [12] Radiometric
12 Longnan Liangzhu Charcoal 4685±90 3320–3650 0.931 3465 [13] Radiometric
12 Longnan Liangzhu Charcoal 4595±80 3090–3530 0.950 3345 [13] Radiometric
12 Longnan Liangzhu Charcoal 4280±125 2570–3140 0.879 2905 [13] Radiometric
12 Longnan Liangzhu Macrocharcoal 4290±100 2620–3125 0.911 2915 [13] Radiometric
13 Qianshanyang Liangzhu Charred rice 4715±100 3325–3705 0.953 3495 [9] Radiometric
13 Qianshanyang Liangzhu Wood tool 4565±90 3010–3525 0.976 3270 [14] Radiometric
13 Qianshanyang Liangzhu Wood tool 4130±85 2545–2895 0.929 2710 [14] Radiometric
13 Qianshanyang Liangzhu Bamboo 4025±85 2340–2870 0.996 2570 [14] Radiometric
14 Miaoqian Late Liangzhu Charcoal 4184±61 2620–2900 0.975 2760 [15] Radiometric
14 Miaoqian Late Liangzhu Charcoal 4137±54 2575–2880 1.000 2730 [15] Radiometric
15 Anxi Liangzhu Wood 4215±180 2340–3355 0.999 2800 [14] Radiometric
16 Bianjiashan Liangzhu Freshwater 

gastropod shell
4385±40

2905–3105 0.98 3000
[16] AMS 14C

16 Bianjiashan Liangzhu Plant remains 4200±40 2665–2900 0.98 2780 [16] AMS 14C



5

16 Bianjiashan Liangzhu Plant remains 4150±55 2580–2880 1 2740 [16] AMS 14C
16 Bianjiashan Liangzhu Plant remains 4095±70 2490–2875 1 2675 [16] AMS 14C
16 Bianjiashan Liangzhu Plant remains 4265±35 2705–3000 1 2895 [16] AMS 14C
16 Bianjiashan Liangzhu Plant remains 4220±35 2680–2905 1 2800 [16] AMS 14C
16 Bianjiashan Liangzhu Plant remains 4235±55 2695–2915 1 2870 [16] AMS 14C
16 Bianjiashan Liangzhu Plant remains 4220±35 2680–2905 1 2800 [16] AMS 14C
16 Bianjiashan Liangzhu Plant remains 4130±40 2615–2870 0.93 2725 [16] AMS 14C
16 Bianjiashan Liangzhu Plant remains 4010±35 2465–2590 0.96 2530 [16] AMS 14C
16 Bianjiashan Liangzhu Plant remains 4275±40 2865–3010 0.92 2900 [16] AMS 14C
16 Bianjiashan Liangzhu Plant remains 4145±35 2620–2875 1 2740 [16] AMS 14C
16 Bianjiashan Liangzhu Ash 4150±30 2630–2875 1 2745 [16] AMS 14C
16 Bianjiashan Liangzhu Ash 4030±40 2470–2640 0.95 2550 [16] AMS 14C
16 Bianjiashan Liangzhu Fabric 4100±30 2505–2860 1 2665 [16] AMS 14C
16 Bianjiashan Liangzhu HyPy residue of 

charcoal*
4020±30 2470–2585 0.959 2530 [17] AMS 14C

16 Bianjiashan Liangzhu HyPy residue of 
charcoal

4150±30 2630–2825 0.804 2745 [17] AMS 14C

16 Bianjiashan Liangzhu HyPy residue of 
charcoal

4110±30 2575–2865 1.000 2685 [17] AMS 14C

16 Bianjiashan Liangzhu HyPy residue of 
charcoal

4160±30 2655–2880 0.951 2755 [17] AMS 14C

16 Bianjiashan Liangzhu Wood 4200±30 2680–2895 1 2785 [17] AMS 14C
16 Bianjiashan Liangzhu Wood 4170±30 2635–2880 1 2765 [17] AMS 14C
17 Zhumucun Liangzhu Plant 4170±20 2675–2815 0.805 2770 [18] AMS 14C
17 Zhumucun Liangzhu Charred rice grain 4105±20 2580–2855 1.000 2660 [18] AMS 14C
17 Zhumucun River channel† Charred rice grain 3885±25 2295–2465 1.000 2385 [18] AMS 14C
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17 Zhumucun Liangzhu Charred rice grain 4305±25 2885–2940 0.925 2910 [18] AMS 14C
18 Sidun Liangzhu Charcoal 4150±205 2200–3345 0.996 2720 [19 Radiometric
19 Yangzhu Liangzhu Wood 4310±110 2625–3140 0.849 2955 [20] Radiometric

40 * HyPy (catalytic hydropyrolysis) residue is the contaminant-free black carbon fraction of charcoal and thus can produce an accurate 14C age.

41 † This sample was collected from river channel which could deposit younger sediments, thus it was excluded in Fig. 5.
42
43
44
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45 Table S2 Radiocarbon ages collected from TLS (Tianluoshan), KHQ (Kuahuqiao), TMC 
46 (Tangmiaocun) and ZX-1 and their calibration using the Calib 7.1 program. The mollusk shell 
47 was calibrated using the Marine13 calibration curve and the regional reservoir correction 
48 (ΔR) value of −1±143 was averaged from samples from Tsingtao, southwest coast of Korea 
49 and northwest coast of Taiwan24–26.
50

Name of site Dating 
material

Radiocarbon 
age (BP)

2 sigma 
Calibrated 
BCE

Prob. Median 
prob. (cal. 
BCE)

Data 
source

TLS Seeds 4020±40 2465–2635 0.98 2540 [7]
Seeds 4275±40 2865–3010 0.92 2900 [7]
Seeds 4585±35 3115–3500 1 3355 [7]
Seeds 4660±40 3360–3525 0.96 3455 [7]
Seeds 5465±45 4235–4375 0.96 4315 [7]
Seeds 5620±35 4360–4520 1 4450 [7]

KHQ Not given 2950±100 915–1415 1 1160 [21]
Not given 3825±100 2015–2500 0.97 2280 [21]
Not given 4410±120 2860–3375 0.96 3095 [21]
Not given 4820±150 3325–3965 0.97 3590 [21]
Not given 5070±150 3630–4245 0.96 3870 [21]
Not given 5820±170 4335–5075 0.99 4690 [21]

TMC Pollen 
residue

4140±40 2615–2875 0.97 2735 [22]

Pollen 
residue

5230±40 3965–4225 1 4030 [22]

ZX-1 Mollusc 
shell

4160±40 1870–2695 1 2280 [23]

51

52

53

54

55

56

57

58

59
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60

61 Figure S1 Radial plot of measured doses (Central Age Model, CAM) for single grains of quartz 

62 from Yushan site. The open symbols relate to De values outside the ±2δ range.

63

64

65

66

67

68

69

70

71

72

73

74

75
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76

77 Figure S2 Distribution of sediment profiles with high-resolution radiocarbon dates (Tables 4, 

78 S2). The map is generated by software ArcGis 10.1 (www.esrichina.com.cn) using the data 

79 set of topography provided by International Scientific & Technical Data Mirror Site, 

80 Computer Network Information Center, Chinese Academy of Sciences 

81 (http://www.gscloud.cn).

82

83

84

85

http://www.esrichina.com.cn
http://www.gscloud.cn
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