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abstract

Objective: The aim of this paper was to identify the

characteristics of memory patterns with respect to a visual

input, perceived by the human operator during a manual

control task, which consisted in following a moving target

on a display with a cursor.

Background: Manual control tasks involve non-

declarative memory. The memory encodings of different

motor skills have been referred to as procedural memories.

The procedural memories have a pattern, which this

paper sought to identify for the particular case of a one-

dimensional tracking task. Specifically, data recorded from

human subjects controlling dynamical systems with different

fractional order were investigated.

Method: A Finite Impulse Response (FIR) controller was

fitted to the data, and pattern analysis was performed to the

fitted parameters. Then, the FIR model was further reduced

to a lower order controller; from the simplified model, the

stability analysis of the human-machine system in closed-

loop was conducted.

Results: It is shown that the FIR model can be employed

to identify and represent patterns in human procedural

memories during manual control tasks. The obtained

procedural memory pattern presents a time scale of about 650

ms before decay. Furthermore, the fitted controller is stable

for systems with fractional order less or equal to 1.

Conclusion: For systems of different fractional order,

the proposed control scheme – based on a FIR model –

can effectively characterize the linear properties of manual

control in humans.

Application: This research supports a biofidelic approach

to human manual control modeling over feedback visual

perceptions. Relevant applications of this research are: the

development of shared-control systems, where a virtual

human model assists the human during a control task, and

human operator state monitoring.
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Introduction

The execution of learned motor skills involves a series of

coordinated actions by the muscular system. These actions

are generally a response to perceived stimuli and are

carried out automatically. Thus there is some type of non-

declarative memory involved in a manual control task. These

memories, which encode motor skills, have been referred

to as procedural memories (Squire, 2004). Examples of

actions performed through procedural memories are: feed-

forward tasks, such as writing an English letter or language

articulation (Kawato, 1999), and tasks which combine feed-

forward and feedback control, such as driving a vehicle or

executing a pursuit control task (Donges, 1978; Martı́nez-

Garcı́a, Zhang, & Gordon, 2016).

The aim of this paper was to identify procedural memory

patterns, i.e. unconscious implicit memories that perform

a complex activity, which are used by the human Central

Nervous System (CNS) during manual control tasks with

visual feedback. The term procedural memory is very broad

and has been treated in different contexts in the literature. For

example, cognitive architectures such as ACT-R represent

procedural memories as a set of if-then rules, which contain

the knowledge needed to achieve specific goals (Anderson

& Lebiere, 2014). These architectures can be employed

to simulate human decision making processes and human

behavior at a symbolic level. Thus they are tools that can

aid in the design of human-machine interaction interfaces

(Ritter, Baxter, Jones, & Young, 2000). Recent versions

of ACT-R include a vision module, which makes them

suitable to model the motor responses to visual acquisition

Ritter, Tehranchi, and Oury (2019). Other human cognition

models are reviewed in Ritter (n.d.). Here, the particular

case of procedural memory patterns in one-dimensional

tracking tasks was studied. Hence, data collected from

human subjects, executing compensatory and pursuit manual

tracking tasks, were utilized in this paper.

A relevant motivation for this research was the design

of shared-control systems, where a virtual human model

assists the human in a control task – by simultaneously

co-controlling a system. It is known that if the assisting

virtual human model does not accurately characterize human

control, this may lead to increased workload for the human

operator, instead of improved performance (Griffiths &

Gillespie, 2005). The increased workload is more likely

to occur when the model and the human produce control

pulses in anti-phase, than when there is a relatively small

magnitude discrepancy between the human and the model.

Therefore, to achieve a higher degree of integration between

the human and the machine, a better understanding of the

principles of human control at a qualitative level is needed

(Abbink et al., 2018; Wang, Zheng, Kaizuka, & Nakano,

2018). One possible symbiotic control scheme is that of

bi-manual control, in which a subject controls a machine

with two controllers that combine their inputs; a real-world

example is the control of an aircraft with a flying stick in one

hand and the throttle in the other (Barfield & Dazzo, 1983).

With the subject of human-machine symbiosis in mind, the

aim here was to produce a model that sketches the patterns

of human control.

Many other different approaches are being investigated in

academia to reproduce biofidelic manual control, particularly

in the field of highway driving. These range from optimal

control (Schmitt, Bieg, Manstetten, Herman, & Stiefelhagen,

2016) and inverse optimal control (Inga, Eitel, Flad, &

Hohmann, 2018) to multiplicative models (Martı́nez-Garcı́a

& Gordon, 2018).

The present study was performed under the assumption

that the human operator response can be approximately

characterized as a linear actuator. This is clearly an over-

simplification, since the CNS is a complex network of paths,

some wired in a feed-forward manner while others in a
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feedback manner, and therefore the human operator is a

highly non-linear system (Bullier, 2001). Nevertheless, this

approach is not uncommon in the literature; the theory of

quasi-linear models (Jagacinski & Flach, 2003; McRuer &

Jex, 1967; Tustin, 1947) shows that the human frequency

response H(s) can be represented as a superposition of a

linear functionL(s) and some additional nonlinearitiesR(s),

which are usually called the remnant: H(s) = L(s) +R(s).

Although L(s) cannot fully characterize human control, it

still offers insights into the nature of the human responses.

Additionally, for the control of simple plants (i.e., systems),

the linear equivalent system L(s) is sufficient to achieve

stable control in closed-loop. In Roig (1962) it was estimated

that for such systems L(s) represents approximately 90% of

the human control responses, although this number is highly

variable and depends on the type of plant and control tasks

being performed.

In this study L(s) was fitted from the human data to

a Finite Impulse Response (FIR) control system, which

integrates a series of past observations through a weighted

sum. In this way, the procedural memory pattern is here

represented as a series of weights. These weights manifest

the relative importance of the observations of a particular

visual cue at different instants. Herein, the linear control

responses of the human operator are modeled with a filter

that considers the visual memories acquired during a control

task – i.e., the dynamic displacements of a moving target.

The method of using a FIR model to mimic human

control can be found in the literature (Shinners, 1974), but

not the study of the resulting memory patterns, under the

assumption that visual memories at different instants are

weighted through an intrinsic procedural memory pattern.

Different biological mechanisms justify the existence of

visual memories. For example, the CNS has an integration

time of ≈ 100 ms, which filters residual firing in the

photoreceptors (Gregory, 1997). Furthermore, the human eye

realizes approximately three saccades per second. During the

brief saccadic periods visual short-term memory (VSTM) is

used to remember the visual scene (Hollingworth, Richard,

& Luck, 2008). And, in Clifford and Ibbotson (2002) it was

suggested that visual motion detection would be impossible

without some sort of prefiltering of the perceived optical

variables.

Regarding the investigation of visual memories in manual

control, a different approach was used in Martı́nez-Garcı́a,

Gordon, and Shu (2017), where the framework of fractional

calculus was utilized. The fractional calculus approach offers

the advantages of adding very few parameters to a model, and

integrating well with general differential equations theory.

However, because a fractional operator is specified with only

one additional parameter, which represents the fractional

order of differintegration, this method, although effective for

modeling, has limited capacity to characterize procedural

memory patterns. On the other hand, although the approach

here employed (FIR model) requires a larger parameter set, it

is more appropriate to study the characteristics of procedural

memories in a control task. The investigated FIR model was

here used as a human performance analysis tool.

Method

Control Task

When trying to characterize how the human operator

processes a visual scene to elicit a control response, two

caveats are present. First, when fitting a control model to

the human response action, it is usually assumed that the

parameters of the model are constant. In reality, human

control is not a stationary process (Pauwelussen, 2012;

Zhang, Martı́nez-Garcı́a, & Gordon, 2018). Secondly, it is

difficult to identify which optical variables are extracted from

the visual scene and integrated by the human CNS. Different

optical variables have been proposed in the literature, from

the displacements of the focus of expansion (Gibson, 1950)

– produced by the perceived motion of the observer – to
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the flow lines radiating from the focus of expansion (Beall

& Loomis, 1996) – which can be perceived as a motion

smear resulting from the filtering properties of the eye (Burr,

1980)∗. To avoid these obstacles, simple laboratory tasks

are commonly used in academia, where a moving target is

presented in a display. Thus it is known what the human

operator is responding to. Further, the dynamics of the

target are driven by a stationary stochastic process. This

is done with the intention of keeping the human control

behavior approximately invariant, or equivalently within a

fixed parameter range for the studied model (Pew, 2007).

For these reasons, an equivalent methodology of a one-

dimensional tracking task was utilized in this research.

The experiments consisted of a dot following one-

dimensional tracking task. The experimental setup was

composed of a 22 ′′ computer display and two control

devices: a joystick (Logitech Extreme 3D Pro) and a

steering wheel (Logitech G27). The joystick had a range

of displacement of ≈15 degrees in each direction, while

the steering wheel could rotate 900 degrees lock to lock.

The normalized displacement (from −1 left to 1 right) was

recorded from the sensor of each device with a resolution of

12 bits, and amplified with a gain KJ = 2 for the joystick

and KW = 5 for the steering wheel. These gains were

empirically tuned so that the tracking task had similar

difficulty with both devices.

The display showed a graphical simulation representing

the state of the controlled system and/or control error

(Fig. 1), according to two different control modes:

compensatory and pursuit (Martı́nez-Garcı́a & Gordon,

2016). In compensatory mode (Figs. 1a, Fig. 2a), the test

subjects were required to nullify the error, which was the

difference in position of a circular cursor – the follower –

from a fixed reference dot – or target – by using the control

device (Fig. 1a). The dynamics of the controlled system

were not explicitly displayed in compensatory mode; only

the relative error was seen by the human. In pursuit mode

(Figs. 1b, 2b), the human had direct access to the plant

dynamics represented by a moving follower dot. Herein,

the forcing function acted by positioning the reference dot.

In this case, the human subject perceived the error as the

relative difference between the two moving dots (Fig. 1b),

while using the control device as plant input. Usually, the

human-control literature explores these two control modes

(Jagacinski & Flach, 2003). But in real applications, the

distinction between them is not always clear. Nevertheless, as

an example, ground vehicle driving is here considered; more

or less, driving in a straight path in the presence of a lateral

perturbation can be interpreted as a compensatory task, while

following a curved path as a pursuit task.

∗In highway driving, the flow lines can be easily assessed as the projected
angles of the road boundaries on the retina: the splay angles (Martı́nez-
Garcı́a & Gordon, 2018).

(a)

(b)

Figure 1. Display presented to the subjects during the
experiments. The blue dot, controlled by the subject, follows the
target – red circle. A white bar indicates the applied control
gain. (a) In compensatory mode, the target is fixed at the center
of the display, and the follower represents the difference
between forcing function and controlled system output. (b) In
pursuit mode, the target moves according to the forcing function
while the follower marks the controlled system output.



5

Display
Human

PlantDisplay
r(t)

e(t) c(t) m(t)

(a)

Display
Human

PlantDisplay
r(t) c(t) m(t)
m(t)

(b)

Figure 2. Human-machine control loop for the experimental
setup in (a) compensatory mode and (b) pursuit mode.

The forcing function r(t) was a sum of sinusoids with

frequencies in the range fk = 0.01− 20 Hz:

r(t) =
∑

fk∈{0.01,0.02,...,20}

e−4fk sin(fk · 2πt− ϕk) (1)

where ϕk ∈ [−π, π] was a randomized phase for each

term. With this choice, the amplitude was negligible for

frequencies outside of the range where a human operator

can perform adequate control – approximately up to 0.75 Hz

(Wargo, 1967).

Each test was performed with five different controlled

systems, described by the transfer function

Gα(s) =
1

sα(Ts+ 1)
, (2)

with α = 0.5, 0.75, 1, 1.25, 1.5 and T = 0.1. The plants with

α 6= 1 are plants of fractional order. In the classical literature

in human-machine systems (McRuer & Jex, 1967), G1(s) is

one of the commonly studied cases. Thus herein, variations

ofG1(s) are considered by incorporating negative (α < 1) or

positive (α > 1) fractionality to the baseline system G1(s).

Fractional Order Systems

Plants with fractional order dynamics (2 with α 6= 1) were

employed to determine the capabilities of a human operator

to control this type of dynamics. In Martı́nez-Garcı́a et al.

(2017) it was shown that humans have limited but consistent

capability to compensate this category of plants. The reader

may refer to this publication to retrieve more specific details

about the experiments (briefly outlined in Table 1) and for

a general overview of the mathematical aspects belonging

to fractional calculus theory. For the investigation here

conducted, it suffices to understand α as a parameter that

allows to vary the order of a dynamical system in a smooth

manner, instead of considering integer order transitions from

one order of differentiation to the next. Smooth fractional

variation of the exponents of a transfer function corresponds

to smooth transitions in the slope of its magnitude in

the frequency domain (Martı́nez-Garcı́a et al., 2017). This

permits for a more concise study on the effects of plant order

variation on human control response. The fractional order

operators are described through the following definitions

of integral and derivative of non-integer (fractional) order

(Podlubny, 1998):

Definition 1: Riemann-Liouville fractional integral. Given

α ∈ R+, a piecewise continuous function f on the interval

(0, T ], with T ∈ R+, and assuming that f is integrable on

the interval [0, T ], then for t ∈ (0, T ]

0D
−α
t f(t) =

1

Γ(α)

t∫
0

f(x)(t− x)α−1 dx (3)

is the Riemann-Lioville fractional integral of order α at t.

Experimental Parameters
Number of subjects 10
Age of subjects 22-33 years
Duration of each event 90 s (60 analyzed)
Number of recorded events 200
Forcing function freq. range 0.01-20 Hz?

Sampling frequency 100 Hz
Steering wheel range −450 to 450 degrees

Optimization Parameters (system identification)
Genetic algorithm # generations 1500
Genetic algorithm # population 500

Table 1. Summarized experimental and optimization setup
parameters. (?) The frequencies of the forcing function are
spaced at 0.01 Hz. Note that the frequencies are weighted so
that they are only effective up to 0.5 Hz. The remaining
frequency values are added to simulate noise in the system.
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Definition 2: Riemann-Liouville fractional derivative. For

ν > 0, the Riemann-Liouville fractional derivative of order

ν is

0D
ν
t f(t) =

ddνe

dtdνe
{0D

ν−dνe
t f(t)}, (4)

where dxe represents the ceiling function.

From (4) it is seen that fractional differentiation is

defined from fractional integration; it involves computing

first a fractional integral and then a classical derivative of

order dνe. Thus fractional differentiation, unlike classical

differentiation, is not a local operator, as it inherits the

features of the integral operator.

Fractional order models are widely employed to represent

systems with memory properties, such as viscoelastic

materials and biological systems with complex interactions

(Magin, 2006). However, the degree of fractionality is

usually very small in real world systems; the transfer

functions representing them, have exponents close to integer

numbers. One example is a low fractionality model for

ground vehicles (Martı́nez-Garcı́a et al., 2017). In this

paper, a larger degree of fractionality was introduced with

exponents half a unit apart from the integer values (2). This

was done to identify the adaptation characteristics of human

control to plant order variation.

Participants

Ten human test subjects, with ages between 22 to 33

years and mixed genders (8 males, 2 females), took part

in the human-control experiments voluntarily after signing

a consent form†. Each subject performed 20 experimental

trials lasting for 90 seconds each.

In total, 200 tracking experiments were recorded from the

10 participants. To minimize adaptation effects, half of the

subjects performed the experiments with the joystick first,

while this was reversed for the other half.

Modeling Approach

Humans employ a history of past observations – visual

memories – to control a dynamical system. For instance,

the particular wiring of retinal cells delays some visual

inputs with respect to others to achieve temporal filtering

properties (Kim et al., 2014). In Martı́nez-Garcı́a et al.

(2017) it was shown that the correlation between visual

inputs and human control responses is increased when the

visual inputs are considered to have fractional memory

properties. Additionally, memory properties are ubiquitous

in the neuromuscular system, from the oculomotor neurons

(Anastasio, 1994) to the viscoelasticity of the arm muscles

(Tejado, Valério, Pires, & Martins, 2013). These past

visual observations are integrated over specific time domain

patterns or procedural memory patterns, which reflect the

use of visual memories during manual control tasks. The

hypothesis tested in this article was that these patterns can

be, to some extent, characterized by a linear FIR model.

Herein, the linear component of human response was

modeled with a FIR model, for the restricted case where the

visual memories correspond to the one-dimensional dynamic

displacements of a moving target (Fig. 1). The FIR model can

be expressed as:

l(t) = GH

N∑
i=0

KiL[ρ+i]{et}, (5)

where l(t) is the linear equivalent response, GH the human

gain, Ki the normalized visual cue weights (which show

the decay of the visual cues over time), et the tracking

error at time t and L the back-shift or lag operator. Thus

in compensatory mode et = e(t) (Fig. 2a) and in pursuit

mode et = r(t)−m(t) (Fig. 2b). The lag operator delays the

error according to a constant term ρ by ρ∆T seconds, and a

variable term i by i∆T seconds, where ∆T is the selected

†The experiments were approved by the College of Science Research Ethics
Committee of the University of Lincoln with UID COSREC491.
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discretization step. The constant term ρ reflects the reaction

time of the human operator.

The human operator can be regarded as an intermittent

controller acting at discrete time steps every ∆T = 50 ms.

This assumption is justified by several research studies. In

Craik (1947) it was pointed out that the human operator

performs discrete ballistic corrections during a control task,

although this may be difficult to detect in skilled operators

(Craik, 1948), who rely more on memory and make smoother

control responses (Miall, Weir, & Stein, 1993). Also, it has

been estimated that the time needed for the CNS to switch

between different sensory channels is around 60 ms. This

value coincides with the minimum time gap between two

signals that allows the brain to discriminate them (Wargo,

1967). In Card, Newell, and Moran (1983) it was reported

that the cycle time of human perception – i.e. the time needed

to decide how to respond to a stimulus – ranges from 25 to

170 ms. This value is in agreement with the chosen ∆T and

is relevant to estimate the optimal frame rate in a computer

display (Chen & Thropp, 2007). The two point discrete

steering control model introduced in Salvucci and Gray

(2004) also uses ∆T = 50 ms. Further, in Miall et al. (1993)

it was suggested that intermittent control is a sign exhibited

in negative feedback control; subjects deprived of visual

feedback produce smoother control responses. Similarly, in

Hollingworth et al. (2008) it was stated that human visual

acquisition can be divided into a series of discrete steps.

And in Martı́nez-Garcı́a et al. (2016), fundamental discrete

pulses were found from the steering signal in naturalistic

driving data using signal decomposition methods, while in

Zgonnikov and Markkula (2018) these pulses were modelled

through an evidence accumulation mechanism.

The human response delay, here denoted by the parameter

τ , was included in the model to reflect the effective time

delay with the additional transport delays during the control

task. This value was determined in Zhang et al. (2018)

for every subject and for the same data used in this study.

Accordingly, for this study, τ was pre-fixed with respect to

the human subject’s output for each controlled plant Gα(s)

defined in Eq. 2, and averagely was 199 ms for joystick

control and 272 ms for steering wheel control. From the value

of τ , the parameter ρ was estimated for the FIR model from

the relation ρ∆T ≈ τ .

Model Parameter Fitting

A genetic optimization algorithm was used to fit the weights

Ki in Eq. (5) to the human data. The objective function

was the cross-correlation between l(t) and the recorded

human response – both controlling a plant acted by the

same forcing function input. To compute l(t) in the objective

function, ρ was fitted from the corresponding human subject

data. During the optimization process, the gains Ki were

constrained to be a normalized vector, in order to prevent the

generation of spurious patterns by the genetic algorithm.

The initial population of the algorithm was selected

through a uniform probability distribution, while the parents

in each generation were selected by the stochastic universal

sampling technique (Baker, 1987). The mutations were

produced by adding Gaussian noise to the sample and the

crossover fraction in each generation was 0.8.

Genetic algorithms are less prone to be captured at local

minima, compared to other approaches such as convex

optimization methods. Thus they have been consistently

employed to fit parameters in generic data (Weiszer, Chen,

& Locatelli, 2015) – or when the objective function has

unknown characteristics – such as data recorded from human

subjects (Kase, Ritter, Bennett, Klein, & Schoelles, 2017).

After the genetic algorithm was applied to determine Ki,

the human gain GH was fitted by linear least squares.
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Results

FIR Human Control Model

To fit the weights of the FIR (5) to the human data, the

genetic algorithm ran for a fixed number of generations and

was executed multiple times with different randomizations

(Table 1). For each run, the results were found to be very

similar. The fitted parameters Ki with respect to the number

of delayed steps of length ∆T are shown in Fig. 3 for the 200

recorded experiments (20 per subject), including the joystick

and the steering wheel.

Although there is large variability in the data (Fig. 3), a

clear pattern is exhibited by the median values. Considering

all the variants in the experiments – control device, type

of plant, display mode and different subjects – and that

the human operator response is in general very noisy, the

variability was anticipated. Additionally, with the exception

of K3,4, the variability seems to increase with the number of

delayed units (Fig. 3). For i = 2, 3 the high variability may

be produced by the large slope of the trend. Thus the fact that

it increases from i = 5 while the magnitude of the weights

decreases, confirms that humans rely in a more consistent

manner on recent information than in older observations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

-0.2

0

0.2

0.4

0.6

K
i

Figure 3. Fitted Ki parameters with the experimental data
recorded in this study. For each number of delayed steps of
duration ∆T , the corresponding box plot is displayed
summarizing the 200 recorded experiments. In the box plots,
the box edges mark the 25th and 75th percentiles while the box
whiskers extend to 1.5 times the interquartile difference. The
notches in the box plots indicate the range of the 95%
confidence intervals for the median.

Fig. 3 also exhibits the resulting pattern of the human

operator’s adaptation to the plant Gα(s). It has been

established (McRuer & Jex, 1967) that the human response

characteristics depend on those of the plant, in such a way

that the whole human-machine system presents invariant

dynamic properties. This is reflected by the evidence that

the joint interaction of the human and the machine can

be represented by a particular transfer function near the

crossover frequency:

Cτωc
(s) =

ωc
s
e−τs. (6)

This transfer function (6) is known as the Crossover Model.

Here it was observed that, for the studied plants (2), the

weights are positive for the first 2− 3 delayed steps (100-

150 ms) and remain negative during the continuing 8 delayed

steps (≈ 400 ms). Finally, the weights become essentially

zero after approximately 13 delayed steps (650 ms). This

time constant shows the intrinsic time scale of the procedural

memory pattern and is in agreement with Card et al.

(1983), where it was reported that the decay time of a

visually perceived image in memory is in the range 90-

1000 ms. For the chosen plant dynamics, control device and

forcing function, it seems that humans use visual memory

approximately up to 650 ms. The sign change in the memory

pattern between K2 and K3 manifests that, visual inputs

perceived at different time are weighted in such a way that

the rate of change of the error – and higher order rates

– can be approximated by the human, allowing the CNS

to estimate the future states of the observed system (7).

Another possibility is that the shift in sign is associated at

a physiological level with event-related potentials, such as

contingent patterns of response in the frontal cortex (Walter,

1964).

Thus the FIR model is consistent with the concept

that the human brain uses composite variables, which are

linear combinations of derivatives of different orders of
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the observed cues, to predict the states of the tracked

system (Hanneton, Berthoz, Droulez, & Slotine, 1997).

By considering that derivatives can be approximated as

finite-differences it can be interpreted that, modeling the

human operator with a FIR transfer function is qualitatively

equivalent to considering the prediction effects of higher

order derivatives. That is, as the n-th order derivative of a

function f can be approximated with

Dnf(t) ≈ 1

∆n
t

{ n∑
k=1

(−1)k
(
n

k

)
f(t− k∆t)

}
, (7)

which alternates positive and negative weights over past

observations for the integer order case; humans may use

the weight sign shift to obtain information about the rate

of change of the controlled system – of integer or fractional

order – by using visual memories. For example, in Hanneton

et al. (1997) it was studied the case of human’s using a linear

combination of position and rate information – a sliding

variable – to predict the states of the controlled system.

Pattern Analysis Across Experimental Variants

The pattern observed in the weights Ki (Fig. 3) is consistent

across different subjects, after compensating their intrinsic

effective time delay (Fig. 4a). Thus the number of test

subjects in the experiments was sufficient. The pattern

is also qualitatively consistent across different control

devices (Fig. 4b) and within the different control modes

(Fig. 4c). Hence, the selected model (5) and the optimization

methodology are adequate, and the data have not been

overfitted.

Nevertheless, in relation to the two types of control device

tested, the observed pattern has quantitative differences

between the joystick and the steering wheel. In Fig. 4b it

is shown that for the case of joystick control, there is a

higher negative gain but a faster weight decay, while for

steering wheel control humans tend to use lower cue weights

in magnitude but sustain the response longer. This effect is

likely to be produced by the longer transport delays, which

result from muscle latency, when using the steering wheel

(Martı́nez-Garcı́a & Gordon, 2016).

Contrarily, the pattern is virtually identical between

compensatory and pursuit mode (Fig. 4c). In another study

with the same data (Martı́nez-Garcı́a & Gordon, 2016), it was

shown that humans display a larger crossover frequency and

greater performance in pursuit tasks than in compensatory

tasks. Thus every aspect of the human response can be

represented by the proposed methodology, but the approach

is particularly useful to characterize visual memory patterns.

In Fig. 4d the results are compared for the studied plants

(2). It is observed that as the order of the plant increases,

the magnitude of the gains decreases for recent observations,

while the decay of the weights (5) over the perceived error is

lower. This is possibly caused by the fact that the response of

higher order plants is more difficult to predict, thus humans

rely more on recent observations when the order of the plant

is larger.

Further, the gains, GH in (5) are shown in Fig. 5 tabulated

per subject. The gains are larger for joystick control than for

steering wheel control, which is natural since the joystick has

a higher output/hand-displacement ratio. Another reason is

that untrained humans are not so skilled in joystick control

and their output is closer to a bang-bang controller as

compared to steering control; in steering wheel control both

hands can act in anti-phase, increasing the impedance of the

steering action to reduce instabilities (Burdet, Osu, Franklin,

Milner, & Kawato, 2001).

It was also observed that the gains increase with the

order of the plant. As already stated, in general higher order

plants are more difficult to control and usually require longer

preview time. In Ito and Ito (1975) the effects of different

preview time intervals were thoroughly examined. For the

presented analysis, and in order to simplify the discussion, a

preview of the error was not considered.
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Figure 4. Fitted parameters Ki averaged (a) for each subject
(b) for different control device – joystick and steering wheel – (c)
for different control modes – compensatory and pursuit – and
(d) for each plant Gα(s).

Reduced Order Model

To study the FIR human control model from the perspective

of classical control, it is practical to reduce it to simpler

transfer functions. First, the FIR model was truncated by

discarding the noisy cue weights in (5) – only K0 to K13

were considered:

H̃(z) = GH{K0z
−ρ +K1z

−ρ−1 + · · ·+K13z
−ρ−13}.

(8)

Then, a lower order model – with two zeros and two poles –

was fitted from (8):

Hd
α(z) =

a0(α) + a1(α)z−1 + a2(α)z−2

b0(α) + b1(α)z−1 + b2(α)z−2
. (9)

(a)

(b)

Figure 5. Fitted gain GH for the different human subjects for
(a) joystick control and (b) steering wheel control. In the box
plots, the box edges mark the 25th and 75th percentiles while
the box whiskers extend to 1.5 times the interquartile difference.
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Plant α Hd
α(z) (Discr.) Cont. Hc

α(s) (Cont.)

0.5 0.37−0.15z−1−0.11z−2

1−1.47z−1+0.63z−2
0.13s2+12.32s+57.15
s2+9.546s+83.86

0.75 0.39−0.19z−1−0.17z−2

1−1.4z−1+0.56z−2
0.13s2+14.96s+14.51
s2+11.72s+68.07

1.0 0.42−0.25z−1−0.16z−2

1−1.37z−1+0.53z−2
0.18s2+16.09s+8.08
s2+12.92s+91.47

1.25 0.45−0.31z−1−0.14z−2

1−1.29z−1+0.48z−2
0.22s2+17.14s−2.96
s2+14.97s+111.2

1.5 0.42−0.27z−1−0.17z−2

1−1.25z−1+0.48z−2
0.19s2+17.20s−16.27
s2+15.31s+132

Table 2. Lower order discrete transfer functions Hd
α(z) fitted

from the FIR model (8) for each of the studied controlled plants
Gα(s), and their continuous correlate Hc

α(s) obtained through
the Tustin’s bilinear transform.

The optimal lower order model Hd
α(z) was found through

the instrument variable method from (8). The fitted models

are shown in Table 2 and their corresponding frequency

response in Fig. 8. The frequency response for the reduced

model in (9) is accurate within the frequency range where

the human operator can perform a fair level of control; the

maximum frequency limit is in the range 1-5 Hz, depending

on the predictive capacity of a given manual control task

(Pew, 2007). Another study (Wargo, 1967) stipulates a

limit of 0.7-1.5 Hz for compensatory and pursuit tasks with

irregular forcing functions, which do not allow for adequate

prediction.

For the truncated FIR model (8), the pulse and step

response are shown in Fig. 6. These can be compared to

the pulse and step response of the reduced lower order FIR

model (9) in Fig. 7. The lower order model, is a smoother

variant of the FIR model. In both models the step response

has a bounded steady state. However, for α > 1 the step

response stabilizes at a negative value. This suggests that the

controller may be unstable for such plants. Nonetheless, the

pulse response of Hd
1 (z), representing the average control

behaviour for all α, is within the 95% confidence intervals

established in Fig. 3, up to the limit of the here inferred time

constant of 650 ms (Fig. 7). Thus the reduced model still

matches faithfully the data.
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Figure 6. (a) Pulse response and (b) step response for the
truncated FIR model in (8), controlling Gα(s) for each fractional
coefficient α.

Stability Analysis

Next, to analyze the stability of the reduced model (9) in

closed-loop, the discrete approximation of the controller

Hd
α(z) was converted to an infinite impulse response (IIR)

controller Hc
α(s) (Table 2):

Hc
α(s) =

c0(α)s2 + c1(α)s+ c2(α)

d0(α)s2 + d1(α)s+ d2(α)
. (10)

Although as mentioned, the human operator can be

regarded as a discrete controller, the filtering capabilities

of the muscular system make the human motor response

similar to a continuous signal (Craik, 1947). In classical

control theory, a common way to analyze the stability of a

system with feedback – for varying values of a parameter

representing the control gain – is the so-called root locus
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Figure 7. (a) Pulse response and (b) step response for the
reduced lower order model Hd

α(z) (Table 2) controlling Gα(s)
for each α. In (a), the notches in the box plots indicate the 95%
confidence intervals for the median found in Fig. 3.

analysis. This method tracks the position of the poles for the

different values of a parameter, which here is the control gain

of the human operator in response to the visual memories of

the input error.

In a root locus analysis, each pole of the closed-loop

transfer function is represented as a path in a plot, where

each point of the path marks the position of the pole for a

particular gain. For the system to be stable with a particular

gain, all the poles must be in the left half-plane.

To perform root locus stability analysis in the context

studied here, there was one difficulty: the classical root

locus technique is not applicable for fractional order

transfer functions. The reason is that fractional order

systems have branch points instead of poles. However,

Matignon’s stability theorem can be applied (Matignon,

1998). This theorem translates the bounded-input, bounded-

output (BIBO) stability region of a fractional order transfer

function to the stability region of a non-fractional one.

Theorem (of stability for fractional order systems).

Given a fractional order transfer function G(s) and a non-

fractional transfer function G̃(s) such that, for a particular

0 < ρ < 1, they satisfy G̃(sρ) = G(s) then,

G(s) is BIBO stable⇐⇒ | arg(p)| > ρπ2

for every pole p of G̃(s).

In particular for ρ = 1 the theorem coincides with

the classical stability criteria for non-fractional transfer

functions. Choosing ρ = 1/4 as a common factor, all the

plants Gα(s) were transformed into non-fractional order

plants G̃α(s):

G̃α(s) =
1

s4α(Ts4 + 1)
. (11)

And applying the same transformation (s→ s4) to a Padé

approximation of the human response delay, and to the

human control model Hc
α (Table 2), allowed for the

computation of the root locus plot of the combined human-

machine system (Fig. 9). Each sub-figure shows the branches

traced by the poles of the closed-loop system as the gain

of the control loop is increased from 0 (start of the branch

denoted by ×) to∞ (end of the branch denoted by ◦.). Thus

when a particular path is fully inside the gray – unstable –

region, the system is unstable for any chosen gain. Figs. 9a,

9b and 9c show that the system is stable for α ≤ 1, as for

these plants sufficiently small enough gains keep all the poles

within the stability region (white background region). On

the other hand, Figs. 9d and 9e show that the system cannot

attain stability for any positive gain when α > 1. For α > 1

one of the branches starting at the origin is fully inside the

unstable region (gray colored region) for positive gains.
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Figure 8. Frequency response for the FIR model (8) and its
corresponding reduced order counterpart (9) for controlling the
plants Gα (2) with (a) α = 0.5, (b) α = 0.75, (c) α = 1.0, (d)
α = 1.25 and (e) α = 1.5.
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Figure 9. Root locus plots for the continuous model Hc
α(s) (10)

controlling the plants Gα (2) with (a) α = 0.5, (b) α = 0.75, (c)
α = 1.0, (d) α = 1.25 and (e) α = 1.5. A Padé approximant of
the human effective delay was included in the transfer function.
The colors are arbitrarily assigned to discriminate between the
different branches for each pole. Some of the branches have a
terminus at infinity.
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Discussion

Although the FIR model is proposed as a qualitative model

of the human control response patterns, the control actions

of the human and of the model were also compared. In

Martı́nez-Garcı́a and Gordon (2016) – and with the same

data-set employed in this study – it was seen that on

average humans produced a mean squared error of 0.155

with joystick control and 0.205 with steering wheel control.

For Gα(s) (2) with α ≤ 1 the relative mean squared error

of the difference between human test subjects and model was

of 0.0158 (16%) and 0.0124 (12%) for the joystick and the

steering wheel respectively. These values are in agreement

with the reported magnitude for the remnant in Roig (1962)

(≈ 10%).

The evidence that the human subjects could still control

in a stable manner the higher order fractional plants, while

the linear controller cannot, suggests that a non-linear

component or remnant is missing in this type of model. For

classical linear transfer functions, the remnant or non-linear

characteristics of a human-machine system are commonly

regarded as negligible (McRuer & Jex, 1967). Thus a

possible explanation, for the instability of this model when

α > 1, is that the remnant may be more significant for higher

order fractional plants, as these are more difficult to control.

Indeed some subjects manifested this opinion during the

course of the experiments.

Although the linear equivalent system (5) is not enough for

achieving stable control of higher order fractional systems

(2 with α > 1), the linear part of the procedural memory

pattern seems to have the same qualitative aspects as in the

case when α ≤ 1 and stable control is achieved (Fig. 6).

One possible explanation for this is that the human operator,

besides pre-learned control patterns – which are generic for a

wide category of plants, also introduces non-linear corrective

actions to compensate for the deficiencies of those patterns,

when they do not fully adjust to the controlled system.

While adding an additional term to the controller could

stabilize the system, this would not tell much about the

characteristics of human control, which was the main topic

of this research. In general, modeling the remnant has not

proven to be useful, due to the variability in human behavior

(Jürgensohn, 2007).

Further, the proposed model only considers one-

dimensional inputs in a simple laboratory task. In realistic

control tasks the visual scene will be more complex, and

the relationship between control actions and visual memories

would need to be categorized with respect to optical

variables.

Conclusions

This paper was concerned with examining the role that

visual memories play in producing adequate tracking control.

A methodology was proposed to investigate procedural

memory patterns found in human response while performing

a manual control tracking task. The approach consists in

fitting human response to a Finite Impulse Response (FIR)

model, by means of a genetic algorithm. For this, we utilized

data collected from ten human subjects controlling plants

with five levels of different fractional order, and with a

joystick or a steering wheel.

From the fitted parameters of the model, different

conclusions have been drawn. Primarily, the human operator

seems to rely on a characteristic memory pattern, which

is dependent on the controlled plant. This pattern is

consistent across different human subjects and different

control devices. Also, it is consistent across different control

modes: compensatory and pursuit. The pattern reflects how

the human operator employs past observations of visually

acquired perceptions, in order to predict the states of the

plant. Moreover, it was shown how humans adapt the pattern

when the order of the plant is increased: humans used a

shorter memory span and higher gains for higher order

plants. For the tested plants the pattern displays an average
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duration of 650 ms – a value that reflects the decay time and

storage capacity of visual memories in a control task.

Further, the FIR model was reduced to a simplified lower

order continuous time model. From the simplified model the

stability of the whole human-machine system in closed-loop

was assessed. It was shown that the fitted procedural memory

pattern is unstable for plants with α > 1. However, for these

plants the human subjects were able to achieve effective

control with both control devices, albeit that with difficulty

and lower performance. Hence, it is hypothesized that for

higher order fractional plants the remnant characteristics

that reflect non-linear behavior in human control are more

significant; in the case of non-fractional and linear plants,

the remnant effects are typically considered inconsequential.

These results are aimed to increase the repertoire of

theoretical results on biofidelic human control, in particular

in relation to human perception of optical variables. The

applicability of these results is directed towards human-

machine interaction such as: realistic video game simulation

or gaming performance evaluation; vehicle automation in

highway driving; and developing testing technologies for

vehicles in the field – that mimic adequately human driver

behavior. One particular example is that of the so-called

shared control systems, in which the control of a machine is

shared between an intelligent system and a human operator.

For these techniques to work effectively, the intelligent

system needs to reproduce the overall characteristics of the

human responses.

Future work will be directed to assess which optical

variables humans use in realistic control tasks, such as

driving a vehicle, and to implement biofidelic models that

assist in shared control tasks. Further, the relation of the

procedural memory patterns with event-related potentials in

the frontal cortex is left as a potential expansion of this work,

which would consist in obtaining electroencephalogram or

functional near-infrared spectroscopy recordings from the

motor cortex synchronous to the human control responses.

Another option is surface electromyography sensing in the

biceps (Nacpil, Wang, Zheng, Kaizuka, & Nakano, 2019).

Key Points

• Data recorded from human subjects controlling plants

of different fractional orders are investigated.

• From the controlled actions elicited by humans,

procedural memory patterns are identified and fitted to

a Finite Impulse Response (FIR) model.

• The proposed FIR model is utilized as an analysis

tool to estimate different properties of human manual

control based on visual cues, such as the time scale of

the procedural memory patterns.

• The stability of the whole human-machine system is

assessed through fractional calculus theory.
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