figshare
Browse
2010TudgeJPhD.pdf (24.96 MB)

Low Resisitivity Pay; the Role of Chlorite in Controlling Resistivity Responses

Download (24.96 MB)
thesis
posted on 2013-11-04, 12:42 authored by Joanne Tudge
Petrophysics traditionally uses Archie’s equation to estimate the amount of hydrocarbons initially in place. This relies on the increase in resistivity when non-conductive hydrocarbons replace conductive saline fluids in the pore space. However, if clay minerals are present in sufficient abundance, they can lower the resistivity to such an extent as to compensate for the increase in resistivity caused by the presence of hydrocarbons. The study reservoir (A), of the Berkine Basin, Algeria, is an example of this “low resistivity contrast”. No discernable change in the resistivity between the water-bearing and the hydrocarbon-bearing sections of the sandstone reservoir results in a continuous overestimation of the water saturation. Chlorite is a known cause of “low resistivity contrast” and is prevalent throughout the study reservoir sandstones. The low cation exchange capacity of chlorites means known shaly-sand models do not apply. Therefore it is necessary to develop an alternative method for estimating saturation in the study reservoir. To understand where the resistivity may be most affected the distribution of the chlorite within the reservoir must be determined. Detailed analysis of the sedimentary data identified a link between the chlorite-rich sandstones and the upper shoreface depositional environment. Discriminant statistical analysis of the log data was successful in identifying the upper shoreface, chloritic sandstones from the lower shoreface sandstones and offshore mudstones. This provided a classification scheme to identify the chlorite-rich intervals from log data in uncored wells. Analysis of capillary pressure curves, with respect to the depositional environments, identified a strong correlation between the chlorite occurrence and core-based petrophysical characteristics. This allowed for Leverett-J saturation height functions to be developed for the upper shoreface, chlorite-rich sandstones and lower shoreface sandstones. Transformation of these Leverett-J functions to the wireline log scale allowed saturation estimations to be calculated that account for the chlorite presence and don’t require the resistivity measurement.

History

Supervisor(s)

Lovell, Mike; Davies, Sarah

Date of award

2010-11-01

Awarding institution

University of Leicester

Qualification level

  • Doctoral

Qualification name

  • PhD

Language

en

Usage metrics

    University of Leicester Theses

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC