Lipid Peroxidation Induced by Expandable Clay Minerals

Small-sized environmental particles such as 2:1 phyllosilicates induce oxidative stress, a primary indicator of cell damage and toxicity. Herein, potential hazards of clay particle uptake are addressed. This paper reports that the content and distribution of structural Fe influence the ability of expandable clay minerals to induce lipid peroxidation (LP), a major indicator of oxidative stress, in biological matrices. Three smectite clays, hectorite (SHCa-1) and two nontronites (NAu-1) and (NAu-2) containing varying total content and coordination environment of structural Fe, were selected. Screening and monitoring of LP was conducted using a thiobarbituric acid reactive substances (TBARS) assay. The higher content of TBARS in nontronites than that in SHCa-1 suspensions was explained because structural Fe contributes to LP. The observed lack of correlation between TBARS content and the extent of Fe dissolution indicated that the formation of TBARS is surface controlled. Results showing a high TBARS content in SHCa-1 but not in nontronite supernatant solutions was explained because the former contains distinct, soluble chemical component(s) that could (i) induce LP by its (their) own right and (ii) whose chemical affinity for organic ligands used as inhibitors is weak. Clays serve as stronger inductors than 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) but are much weaker than FeSO<sub>4</sub>. The outcome of this work shows that LP is clay surface-controlled and dependent on clay structural composition.