Supporting Information for: **Kinetics of Thermal Unfolding of Phenylalanine Hydroxylase Containing Different Metal Cofactors** (Fe^{II}, Co^{II}, and Zn^{II}) and Their **Isokinetic Relationship**

Aristobulo Loaiza^a, Kathryn M. Armstrong^b, Brian M. Baker^b and Mahdi M. Abu-

Omar^a*

^a Brown Laboratory, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA

^b Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA

Table of Contents

Figure S1.	Metal Dependence on Fe-cPAH thermal unfolding rate	Page S2
Figure S2.	Kinetic profiles for the thermal unfolding of Zn-cPAH	Page S3
Figure S3.	Kinetic profiles for the thermal unfolding of apo-cPAH	Page S4
Figure S4.	Kinetic profiles for the thermal unfolding of Fe-cPAH	Page S5
Figure S5.	Arrhenius plots of apo-, and holo (Fe, Zn, and Co)- cPAH	.Page S6
Figure S6.	Biphasic unfolding kinetics of Co-cPAH	.Page S7
Figure S7.	Calorimetric trace for ZnCl ₂ -apocPAH titration	Page S8
Figure S8.	Calorimetric trace for Fe(NH ₃)SO ₄ -apocPAH titration	Page S9
Figure S9.	Calorimetric trace for Fe(NH ₃)SO ₄ -Hepes titration (Control)l	Page S10
Figure S10.	Difference trace. Fe(NH ₃)SO ₄ -apocPAH titration. S8-S9	Page S11
Figure S11.	. Calorimetric trace Fe(NH ₃)SO ₄ -apocPAH, No TCEPI	Page S12

Figure S1. Metal-dependence of holo-cPAH thermal unfolding rate. Thermal unfolding rate constants as a function of metal concentration and metal:enzyme (M/E), • represents unfolding rates of Fe-cPAH at 76°C, and \boxplus represents unfolding rates of Co-cPAH at 74°C.

Figure S2. Kinetic profiles for the thermal unfolding of Zn-cPAH (20 μ M). A, Thermal unfolding at 58°C with corresponding unfolding reaction half-life (t_{1/2}). B, Thermal unfolding at 60°C.

Figure S3. Kinetic profiles for the thermal unfolding of apo-cPAH (20 μ M). A, Thermal unfolding at 46°C with corresponding unfolding reaction half-life (t_{1/2}). B, Thermal unfolding at 50°C.

Figure S4. Kinetic profiles for the thermal unfolding of Fe-cPAH (20 μ M). A, Thermal unfolding at 56°C with corresponding unfolding reaction half-life (t_{1/2}). B, Thermal unfolding at 60°C.

Figure S5. Arrhenius plots of apo- and holo-cPAH.

Figure S6. Biphasic unfolding kinetics of Co-cPAH using sub-stoicheometric $[Co^{2+}]$. Biphasic unfolding kinetics of Co-cPAH at 62°C fitted two a bi-exponential (blue curve), which yield two unfolding rate constants k_{u1} and k_{u2} . Unfolding rate constant for apo at 62°C is shown in parenthesis.

Figure S7. Calorimetric trace (upper panel) for titration of 200 μ M ZnCl₂ into 20 μ M apo cPAH in 50 mM Hepes pH 7.44 at 37 °C. Inset, binding constant (K_a) in M⁻¹, thermodynamic parameters (Δ H_{ITC}, Δ S_{ITC}) in cal mol⁻¹ and cal mol K⁻¹, and stoichiometry (N_{ITC}). Lower panel, plot of the net heat released as a function of the ratio of ZnCl₂ to apo-cPAH. Solid line represents single site binding model fit (See materials and methods).

Figure S8. Calorimetric trace (upper panel) for titration of 400 μ M Fe(NH₃)SO₄ into 20 μ M apo cPAH in 50 mM Hepes pH 7.44, with 2.5 mM TCEP at 37 °C. Lower panel, plot of the net heat released as a function of the ratio of Fe(NH₃)SO₄ to apo-cPAH.

Figure S9. No enzyme control Titration. Calorimetric trace (upper panel) for titration of 400 μ M Fe(NH₃)SO₄ in 50 mM Hepes pH 7.44 with 2.5 mM TCEP into 50 mM Hepes pH 7.44, with 2.5

mM TCEP at 37 °C.Lower panel, plot of the net heat released as a function of the ratio of $Fe(NH_3)SO_4$ to 50 mM Hepes buffer.

Figure S10. Enthalpic trace resulting from the subtraction of figure S9 enthalpic data from Figure S8 enthalpic data. Inset, binding constant (K_a) in M⁻¹, thermodynamic parameters (ΔH_{ITC} , ΔS_{ITC}) in cal mol⁻¹ and cal mol K⁻¹, and stoichiometry (N_{ITC}). Solid line represents single site binding model fit (See materials and methods).

Figure S11. Calorimetric trace (upper panel) for titration of 200 μ M Fe(NH₃)SO₄ into 20 μ M apo cPAH in 50 mM Hepes pH 7.44, without TCEP. Lower panel, plot of the net heat released as a function of the ratio of Fe(NH₃)SO₄ to apo-cPAH.