Kinetics of Electron-Transfer Reactions at Nanoelectrodes

2006-09-15T00:00:00Z (GMT) by Peng Sun Michael V. Mirkin
The kinetics of several fast heterogeneous electron-transfer reactions were investigated by steady-state voltammetry at nanoelectrodes and scanning electrochemical microscopy (SECM). The disk-type, polished Pt nanoelectrodes (3.7−400-nm radius) were characterized by a combination of voltammetry, scanning electron microscopy, and SECM. A number of experimental curves were obtained at the same nanoelectrode to attain the accuracy and reproducibility similar to those reported previously for micrometer-sized probes. A new analytical approximation was developed and used for analysis of steady-state tip voltammograms. The self-consistent kinetic parameter values with the uncertainty margin of ∼10% were obtained for electrodes of different radii and for a wide range of the SECM tip/substrate separation distances. The determined standard rate constants are compared to those previously measured at the electrodes of different dimensions, and the correlation between the heterogeneous and self-exchange rate constants is discussed.