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Internal solitary wavesin a variable medium
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In both the ocean and the atmosphere, the interaction of sitgdestratified flow with topog-

raphy can generate large-amplitude, horizontally profiaganternal solitary waves. Often
these waves are observed in regions where the waveguiderpiegpvary in the direction
of propagation. In this article we consider nonlinear etioluequations of the Korteweg-
de Vries type, with variable coefficients, and use these tsadereview the properties of
slowly-varying periodic and solitary waves.
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1 Introduction

Solitary waves are nonlinear waves of quasi-permanent,fliirshobserved by Russell (1844)
in a now famous report on his observations of a free surfalfagowave in a canal, and his
subsequent experiments. Theoretical work by Boussine®gljland Rayleigh (1876) later
established a theoretical model, and then Korteweg and @es {1895) derived the well-
known equation which now bears their names. But it was ndt th@ second half of the
twentieth century that it was realised that the Kortewed/des equation was a valid model
for solitary waves in a wide variety of physical contexts. @incipal concern here are the
large-amplitude internal solitary waves which propagaansity-stratified fluids such as the
ocean and atmosphere (see, e.g., Apel (1995), Grimshavi \2@6lloway et al (2001) and
Rottmann and Grimshaw (2001)). They owe their existenceltalance between nonlinear
wave-steepening effects and linear wave dispersion, ancehean be effectively modeled by
nonlinear evolution equations of the Korteweg-de Vries\{Ktype.

Many studies based on KdV-type models have used equatidhscastant coefficents.
However, particularly in the oceanic case, the waves arnpggating on a background whose
properties vary in the wave propagation direction. In tliigagion, an appropriate model
equation is the variable-coefficient Korteweg-de Vries ¢ equation

cQ
nr =+ cny + —QQXU + iy + Ay =0, 1)

Heren(x, 7) is the amplitude of the wave, and are space and time variables respectively.
The coefficientc is the relevant linear long wave speed, apds the linear magnification
factor, defined so tha&n? is the wave action flux; the coefficienisand) of the nonlinear and
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4 Roger Grimshaw: Internal solitary waves in a variable medi

dispersive terms are determined by the waveguide propestithe specific physical system
being considered. In a variable medium, each of these isaifumof y. The vKdV equation
was derived by Johnson(1973) for water waves and by Grimgh8@1) for internal waves
(for arecent review, see Grimshaw 2001). The derivationrags the usual KdV balance that
the amplitude; has the same order as the dispersion, measuréd hyy 2, and in addition
assumes that the waveguide properties (i.e. the coefficietit, i, A) vary slowly so that
Q,/Q for instance is of the same order as the dispersion. In teises®, the first two terms
in (1) are the dominant terms, and it is useful to make thestmmation

X g
A:\/@n, t:/ ?X, r=1t—1T. 2)

Substitution into (1) yields, to the same order of approXioreas in the derivation of (1),

A+ aAA, + 6Apen =0 (3)
I A

= 0= —. 4

Q' 3 @

Here the coefficients, g are functions of alone. Note that althoughis a variable along the
spatial path of the wave, we shall subsequently refer totth@stime”. Similarly, althoughe

is a temporal variable, in a reference frame moving with dpegve shall subsequently refer
to it as a "space” variable.

In this paper, we shall review the theory of slowly-varyingripdic and solitary waves
based on the variable-coefficient Korteweg-de Vries equai8) in Section 2. Because in-
ternal solitary waves are often of large amplitudes, it metimes useful to include a cubic
nonlinear term in (1) and (3), which then becomes (see thewdwy Grimshaw 2001),

Ay + aAA, + BA2 A, + 6 Ayyy = 0. (5)

In Section 3, we describe the slowly-varying solitary wagkigons of this extended vKdV
equation (5), and in particular examine the behaviour daaecritical points where either
or 3 vanish.

2 Slowly-varying wavesin the Korteweg-de Vries equation

2.1 Periodic waves
We now suppose that the coefficientss are slowly varying, and write

a=a(T), 6=0(T), T=e, e<<l. (6)
next we seek a standard multi-scale expansion for a modiyeeodic wave, namely

A:AQ(Q,T)+€A1(9,T)+ 5 (7)

€

ezk@—l/TV@mn. ®)
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Here it is assumed that is periodic ind with a fixed period oRr. Substitution into (3) yields
at the leading orders

*VA()G + OLA()A()G + 5162140000 = 0, (9)

1
—VA19 + Oé(AoAl)g + 5/{32141999 = _EAOT . (10)
Each of these is essentially an ordinary differential eignawith 6§ as the independent vari-
able, and withl" as a parameter.
The solution of (9) is the well-known cnoidal wave

Ao = a{b(m)+cr’(v0;m)} +d, (11)
_1-m E(m) B 29
where b = i K (m)’ aa = 12mdy k=, (12)
_ aa [2—m  3E(m)
and V = ad+?{ - _mK(m)} . (13)

Herecn(z;m) is the Jacobian elliptic function of modulus, 0 < m < 1, K(m), E(m) are
the elliptic integrals of the first and second, The amplitigle, the mean value ofi over
one period isl, while the spatial period i8K (m)/~k. But sinceA, is 2r-periodic inf we
see thaty = K(m)/w. As the modulusn — 1, this becomes a solitary wave, since then
b — 0 and ci(z) — sech(x); in this limit v — oo,k — 0 with vk = K held fixed.
Asm — 0,7 — 1/2, and it reduces to sinusoidal waves of small amplitude m and
wavenumbek. The cnoidal wave (11) contains three free parameters,hwiece depend on
the slow variablél’; we take these to be the amplitudethe mean leved and the modulus
m, SO that equations (12, 13) then determin& respectively.

The task now is to determine ho,, depends ori’. There are two principal methods
used to achieve this. One is the so-called Whitham averagetgod, where one seeks three
appropriate conservation laws for the vKdV equation (3eits the cnoidal wave into these
laws, and then averages over the phaggee Whitham 1974). Itis important tha, in addition,
one should also use the law for conservation of waves, namely

kr+wx =0, (14)

where hereX = ex andw = kV. But in the present case, there is Kedependence, and so
this readily yields the result thatis a constant. For the vKdV equation, it is convenient to
take the remaining two conservations laws as those for “haass“momentum”,

8 27

= /O Ad6 = 0, (15)
a 27 )

7 ), A2d) = 0. (16)

Each of these is readily established from (3). Note thabaltin we shall call these the laws
for conservation of mass and momentum, the integrands doauassarily correspond to the
corresponding physical entities. Indeed, (16) is in faeti#tw for conservation of wave action
flux. Substitution of (11) into (15) readily shows thats a constant. Hence the remaining

Copyright line will be provided by the publisher



6 Roger Grimshaw: Internal solitary waves in a variable medi

variable, namely the wave amplitudecan now be found by substituting (11) into (16). The
result is

1 2m
b / cn' (y0;m) df — b(m)?} = constant (17)
T Jo

or (2—3m)(1—m)+%

m2
Substitution of the expressions (12) into (18) finally ygette expression for the variation of
the modulusn,

— 3m?b(m)?} = constant  (18)

F(m) = K(m)2{(4—2m)E(m)K (m) —3E(m)?— (1 —m)K (m)2} = constantf;—2 .
(19)

This expression was obtained by Ostrovsky and Pelinovs8y;11975) and Miles (1979)
for the special case of surface water waves, and is plottEijure 1, which shows thdt(m)

is @ monotonically increasing function of. It follows that asx/§ increases so does. Two
limiting situations are of interest. First, if the nonlimemefficienta decreases towards zero,
then so does the modulus where it can be shown thdt(m) ~ m? asm — 0; it follows
that the modulusn ~ «, but remarkably the amplitudeis finite in this limit. On the other
hand, if the dispersive coefficient— 0, which is often the case when internal waves move
in to shallow water, them — 1 and the waves become more like solitary waves.

An alternative to the Whitham averaging procedure, is taiool the asymptotic expan-
sion to the next order, and invoke the condition tAatis a periodic function of. Indeed, it is
implicit in the Whitham averaging procedure that the higheter terms in the expansion have
this property. Although it can be shown that the presencesoitable underlying Lagrangian
usually ensures that this is so (see, for instance, Whith@rd )l we shall nevertheless verify
it directly here for the first-order term. This is given by {10 which the right-hand side is
now a known periodic function df, given by (11). A necessary and sufficient condition for
A; to be periodic ird is that the right-hand side of (10) should be orthogonal éopériodic
solutions of the adjoint to the homogeneous operator orefitdiaind side. This adjoint is

7VA19 + OéAoAlg + 5k2A1999 =0.. (20)

It is readily seen that two solutions of (20) areA,, both of which are periodic. A third
solution can be found by the variation-of-parameters nobthmit is not periodic. Hence
there are two orthogonality conditons, the first showing thia a constant, while the second
condition recovers the momentum conservation law (16) s&lae then supplemented by the
equation for conservation of waves, which as before yididsit is a constant.

2.2 Solitary waves

The results obtained above for a slowly-varying periodiz@veannot be extrapolated to the
case of a slowly-varying solitary wave, as the limits— 1 ande — 0 do not commute. In
physical terms, the basis for the validity of the slowlyyiag periodic wave is that the local
period (i.e.1/kV’) should be much less than the scale of the variable medieml (ie). The
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Fig.1 A plot of F(m) (19) versusn.

limit m — 1in (11, 12, 13) requires that — oo, & — 0 with vk = K held constant, and
so the period technically becomes much larger than the s€#fiee medium. A new concept
of slowly-varying is needed, which in physical terms is ttre half-width (i.e. the width of
the wave at the level of one half of the maximum amplitudeusthde much less thab/e.
Technically we proceed as above and invoke a multi-scalmpytic expansion of the form
(6. 7). but now replace (8) with

1 T
qbzx—;/ V(T)dT . (21)
A is not now required to be periodic in Instead we consider the domaimoe < ¢ < oo,
and require tha#l remain bounded in the limits — +o0o. We can suppose without loss of
generality that > 0, since the alternative case is recovered by repladingwith — A, —z
respectively. Then, small-amplitude waves will propagatie negative:-direction, and we
can suppose that — 0 as¢ — oo. However, it will transpire that we cannot impose this
boundary condition ag — —oo.

The counterpart of (9, 10) is

*VA(M) + OLA()A()¢ + 5A0¢¢¢ = 0, (22)
—VA1¢ + a(A0A1)¢, + 6A1¢¢¢ = —Apr. (23)
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But now the solution ford is taken to be the solitary wave (obtained from (11, 12, 13hey
limit m — 1 as described above),

A = asecH(K¢), (24)
where V. = % = 40K?. (25)

A background termi can be added as in (11), but is readily shown to be a constaahtgan
then be removed by a Galilean transformation. At the nextprde seek a solution of (23)
for A; which is bounded a$ — +oo, and in fact4d; — 0 as¢ — oo. As before, the adjoint
equation to (23) is

—VA1¢ + OéAoA1¢ + (SA1¢¢¢ =0. (26)

Two solutions aré, Ay; while both are bonded, only the second solution satisfiestmdtion
thatA; — 0 as¢ — co. A third solution can be constructed using the variatiorpafameters
method, but it is unbounded @ — +oo. Hence only one othogonality condition can be
imposed, namely that the right-hand side of (23) is orthagjtmA4,, which leads to

8 oo
8_T/ AZdp = 0. (27)

As the solitary wave (24) has just one free parameter (e.g.athplitudea), this equation
suffices to determine its variation. Substituting (24, 280 i(27) leads to the law

ad = constan%. (28)
We now recall that the vKdV equation possesses two consemnaivs

a o0

— A = 2
5 [ N dx 0, (29)
o [
— Aldr = 30
o | 0, (30)

for mass and momentum respectively; compare (15, 16) focdlse of periodic waves. The
condition (27) is easily recognized as the leading orderesgion for conservation of mo-
mentum (30). But since this completely defines the slowlsyivey solitary wave, we now see
that this cannot simultaneously conserve total mass. Stapparent when one examines the
solution of (23) forA,, from which it is readily shown that although; — 0 as¢ — oo,

A, — H, as¢ — —oo where

8 o0
VH1 = _8_T /_00140d.1'7 (31)
1 ar
H = — 97 2
or ! 3aK a (32)

This non-uniformity in the slowly-varying solitary wave ©iaeen recognized for some time,
see, for instance, Grimshaw and Mitsudera (1993) and tleeene€es therein. The remedy is
the construction of a trailing shelf; of small amplitudeO(e) but long length-scal®(1/e¢),
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which thus hagD(1) mass, butO(e) momentum. It resides behind the solitary wave, and
to leading order has a value independenffpfso thatAd, = e¢A,(X) whereX = ez for

X < ®(T) = fT V(T)dT; it is determined by its value at the locatidh = ®(7T') of

the solitary wave, namely,(®(7")) = H(T') (32). At higher orders ire the shelf itself
will evolve and may generate secondary solitary waves (HI @rimshaw, 2002). It may
readily be verified that the slowly-varying solitary wavedghe trailing shelf together satisfy
conservation of mass.

The expression (28) shows that the amplitude increasess@ees) as/é increases/decreases.
Then, from (32) we see that a slowly-varying solitary wavénafeasing (decreasing) ampli-
tude, will generate a trailing shelf of the same (opposit@agty (recall that the sign of
determines the polarity of the solitary wave. A particulase of interest is when the non-
linear coefficienty passes through zero, whidestays finite. Suppose this occursiat= 0,
where, without loss of generality, we may suppose thatasses from positive to negative
values ag’ increases. Initially the solitary wave is locatedlin< 0 and has positive polarity.
Then, near the transition point, the amplitude of the waveeteses to zero as~ o'/, while
K ~ a?/3; the momentum of the solitary wave is of course conserveléat to leading or-
der), the mass of the solitary wave increases/ag/?, its speed decreases@¥®, and the
amplitudeH; of the trailing shelf just behind the solitary wave grows-als/a®/?; the total
mass of the trailing shelf grows asl /a'/3, in balance with that of the solitary wave, while
the total mass remains a positive constant. Thus the golitave itself is destroyed as the
wave attempts to pass through the critical peint 0. The structure of the solution beyond
this critical point has been examined numerically by Griawlet al (1998), who showed that,
in essence, the shelf passes through the critical point egatime disturbance, which then be-
ing in an environment witlx < 0, can generate a train of solitary waves of negative polarity
riding on a positive pedestal. Of course, these conclusitmsneed to be modified when the
cubic nonlinear termin (5) is taken into account near thigcadipoint (Grimshaw et al, 1999),
and this issue is taken up in the next section.

3 Slowly-varying solitary wavesin the extended Korteweg-deVries
equation

3.1 Periodic waves

Although the main focus in this section is on solitary wawes, shall briefly describe the
analogous theory for periodic waves. We again use the racdtie asymptotic expansion (6,
7, 8), and substitute this into (5). The leading order termois given by

Ao = D(T)+V(6,T), V:HTI{W’ (33)

where 6H = 12572k2(3§m+4m7273(17m)), (34)
BH? = 245721@2(1*77@*%)(3“), (35)

vV o= 4572k2(3§m+2m—1), (36)

and & = a+28D,V=V—aD-p3D?. (37)
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10 Roger Grimshaw: Internal solitary waves in a variable iorad

The spatial period is agaidK (m)/~vk, and so, sinced, is 2w-periodic in§ we see that
v = K(m)/n. The amplitude of the wave is = HB/1 + B. Wheng < 0 there is a
single family with0 < B < m/(1 — m), while if 3 > 0 there are two families;-1 <

B < 0,m/(1—-m) < B < co. The KdV case’ = 0 is recovered by putting/ = a/B,

D = d — a/B and taking the limitB — 0 with a, d, v fixed. As for the KdV case discussed
in section 2.1, the periodic solution contains three fremmeters, which here we take to be
m, B, D. The relations (34, 35. 36) then determind?Z, V.. Note thatthe limitB — m/1-m
corresponds to the limiff, k — 0 with H ~ k2 andm fixed,0 < m < 1. On the other hand,
the limits B — —1, B — oo produce singular solutions.

The determination of howly depends off’, that is, how to determinH, B, D as functions
of T follows the same procedure described in section 2.1. khss constant, and then we
use the conservation laws (15, 16). The first determindsy the requirement that the mean
level of Ay be a constant, say, and the second can then be regarded as determining &ither
or B. Thus, we get

1 2w

D+= [ vy =d. (38)
2 0

1 27

— V(0)?do = (D — d)* + constant (39)
2w Jo

The integrals in (38, 39) can now be evaluated in terms gitedlintegrals,

1 [ 1 B
o ; V(@)dd = M(B,m) = (1+B)K(m)H(1+B’m>’ (40)
1 2m ) a
2 ), VO?do = = (BM(B,m)). (41)
(CiII(B/(1 + B)) + Co K (m) + C3E(m)) (42)
(2(14 B)?(m — B(1 —m)) ’
where C; = 3m+ (4m —2)B — (1 —m)B?,
Cy = —m+(1-2m)B+(1-m)B*, C3=-B(1+B).

HerelIl(n,m) is the complete elliptic integral of the third kind. The régment thatt is a
constant, leads to a relationship betweerand B, found by eliminatingH from (34, 35).
Then the relations (38, 39) provide explicit expressionkilig the wave parameters (or

m) and D with the environmental parametess, J. However, these expressions are quite
complicated to unravel, and we shall not this matter anyhirrhere.

3.2 Solitary waves

As for the vKdV equation (3) we use the same multi-scale asgtitpexpansion used in
section 2.2, that is, (6, 7) with (21). The leading term is shétary wave, which can be
obtained from (33) in the limitn — 1 (noting that the paramtei$, B change their meaning
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in the process), or directly from (5),

H
Ay = —————— 4
0 1+ BcoshKo¢’ (43)
where V. = % =0K?, (44)
2
and B2 = 1+ 6562[{ (45)
«

As before, a background termhcan be added as in (11), but is readily shown to be a
constant, and can then be removed by a Galilean transfamathe amplitude is = H/1+
B. The family of solutions (43) depend on a single parametéickivcan conveniently be
taken asB, and are displayed in Figure 2. As before, we take 0 without loss of generality.
Then, fors < 0 there is just one branch of solutions, with< B < 1; they range from
small-amplitude solitary waves of KdV-type with the faraili‘seci#’-profile whenB — 1,
to a limiting wave of amplitude-a/3 as B — 0; this limiting wave is characterized by a flat
top, and are sometimes called “table-top” waves. #of 0 there are two branches; one has
1 < B < oo and ranges from small-amplitude KdV-type waves wiier- 1, to arbitrarily
large waves with a “sech”-profile & — co. The other branch has has the opposite polarity,
exists for—oo < B < —1, and ranges from arbitrarily large waves with a “sech”-pedfy a
limiting algebraic solitary wave of amplitude2«/ 3. Solitary waves with smaller momentum
cannot exist, and from the point of view of the associatedtspkeproblem are replaced by
breathers (see, for instance, Clarke et al 2000, Grimshald899, Pelinovsky and Grimshaw
1997).

We now follow the same procedure described in section 2.2t iBhthe determination of
how the key parametds of (43) varies withT" is found either by considering the next-order
term in the expansion, or equivalently by using the congemdaw (30) for momentum,
which can easily be shown to also hold for the variable-cdiefiit extended KdV equation
(5). The outcome is that (27) holds for the solitary wave @3) so we get that

H? [* du
il S S 4
K | % Beoshu)? constant (46)
53 1/2
B) = tant— 47
or G(B) constarn 5a2| , 47)
where G(B) = |B?—1*/? /OO _du (48)
—oo (14 Bcoshu)?"
The integral term irG(B) can be explicitly evaluated, and so we finally get
B >1: G(B) = 2B*>-1)2 :F4arctan/E (49)
’ B+1’
0<B<1l: G(B) = 4arctann/ﬂ —2(1— B2 (50)
' 1+ B '

The alternative signs in (49) correspond to the cd®es 1 or B < —1. Expressions of these
forms have ben considered by Egorov (1993) for water waved,Grimshaw et al (1999,
2004) for internal waves.

Copyright line will be provided by the publisher



12 Roger Grimshaw: Internal solitary waves in a variable iorad
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Fig. 2 The solitary wave family (43). The upper panel is fok 0 and the lower panel is fg8 > 0; in
both panelsx > 0,9 > 0.
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Next, just as for the vKdV case discussed in section 2.2,ltvel\svarying solitary wave
is accompanied by a trailing shelf, in order to conservd tatss. As before, to leading order
itisgivenbyA; = A;(X) whereX = ex for X < ®(T) = fT V(T)dT, and is determined
by its value at the locatioX = ®(7") of the solitary wave, namely,(®(T)) = H;(T),
where

oM

VH(T) = T (51)
where M(T) = /OO Apdd , (52)

is the mass of the solitary wave. Substitution of (43, 44) {&2), yields

B [B—1
B*>1: M = i|%|1/24arcta Br1 (53)

_ (60,1 1-B
0<B<l: M = i|6| 4arctan TR (54)
Here the alternative signs in (53) and (54) correspond tedlsesyB > 0 oraB < 0.

The expression (46) provides an explicit formula for the efefence ofB on the envi-
ronmental parameters, 3,9. It is readily shown thatz(B) is a monotonically increas-
ing function of B for 1 < B < oo, and is a monotonically decreasing function®ffor
—00 < B < —1andfor0 < B < 1. In general, a$3®/5a?| — oo, then so doe&(B); we
infer that then, if6 < 0 so thatd < B < 1, B — 0 and the wave approaches the limiting
“table-top” shape. On the other handif> 0 and1 < B < oo thenB — oo and the wave
shape approaches the “sech”-profile, while-fo < B < 1, thenB — oo and the wave ap-
proaches the limiting algebraic solitary wave. The behawaf the wave amplitude in these
limits depends on the behaviour of each of the paramete$so.

We will now return to the special case of interest whepasses through zero, white
stays finite. This was considered in section 2.2 when thecautmlinear term in the vKdV
equation (5) is omitted, and now we reconsider this limit wisestays finite. First, let us
suppose that < 0,0 < B < 1. Then ase — 0, we see from (46) and (50) that — 0
with B ~ 2 exp (—1/2|«a|). Thus the approach to the limiting “table-top” wave is quépid.
From (44. 45) we see that in this limik™ ~ |«| and the amplitude ~ |«|. Curiously, this
is more rapid destruction of the solitary wave than for theecahens = 0. At the same
time, the mass\/ (54) of the solitary wave grows da|. The overall scenario after has
passed through zero is similar to that described above éorkldV equation (3) and has been
discussed by Grimshaw et al (1999). Essentially the tigtinelf passes through the critical
point as a disturbance of the opposite polarity to that obttiginal solitary wave, which then
being in an environment with the opposite sigmofcan generate a train of solitary waves of
the opposite polarity, riding on a pedestal.

Next, let us suppose that > 0 so thatl < B? < oo There are the two sub-cases to
consider,B > 0 or B < 0, when the the solitary wave has the same or opposite potarity
a. Then, asx — 0,|B| — oo as|B| ~ 1/|«|. It follows from (44. 45) that therd ~ 1,

h ~ 1/lal anda ~ 1. It follows that the wave adopts the “sech™-profile, but Hisste
amplitude, and so can pass through the critical pairt 0 without destruction. Note that
here the masa/ (53) is finite.
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14 Roger Grimshaw: Internal solitary waves in a variable iorad

Finally, we consider the situation wheh — 0. In this situation we see from (47) that
G ~ |B]*/? and so|B| — 1. There are three sub-cases to consider. First, suppose that
initially 5 < 0 and so0 < B < 1. Then it follows from (50) that — B ~ |3| and so the
wave profile becomes the familiar KdV “se¢kshape. Also, it is readily shown from (44.
45) thatK ~ 1,a ~ 1, M ~ 1 and so the wave can pass through the critical pgiat 0
without destruction. However, after passage through thiearpoint, the wave has moved
to a different solitary branch (see Figure 2), and this magnde its ultimate fate. Second,
suppose that initiallyd > 0 and1 < B < oco. Then it follows from ( 49) thatB — 1 ~ 3
and so again the wave profile becomes the familiar KdV “&&shape, whileK, a, M ~ 1.
This is just the reverse of the first case and again the waveassithrough the critical point
# = 0 without destruction. Third, suppose that initially > 0 and—1 > B > —oo. In
this case it an be shown from (49) th@l{ B) decreases fronx to a finite value o7 as B
increases from-oco to —1. Consequently the limi# — 0 in (47) cannot be achieved. Instead
as( decreases the lim = —1 is reached, when the wave has become an algebraic solitary
wave. Presumably a further decreas@icould generate breathers.

4 Discussion

In this paper we have reviewed the procedure for determittiagoehaviour of an internal
solitary wave propagating in a variable medium. The disondsas been based on the variable
coefficient KdV equation (3) and its extension to (5) whicketmaccount of cubic as well as
guadratic nonlinearity. The results have been put intoedrtty a brief discussion of the
corresponding theory for periodic waves; the essentiéidice between a solitary wave and
a periodic wave is that while both deform to conserve momanthe solitary wave by itself
cannot simultaneously conserve mass and so generateBraytshielf, whereas the periodic
wave has two extra degrees of freedom and hence can alsdaiolisly conserve both mass
and wavenumber. This difference is crucial when one exasrine behaviour near critical
points where one of the nonlinear coefficients in (3) or (338 through zero.

Application of the theory presented here is widespreadHervariable coefficient KdV
equation (3) and its validity has been confirmed by severaierical simulations. Essen-
tially, the solitary wave will deform adiabatically (tha, iconserving its momentum) as long
as the background environment varies slowly relative tcstiléary wave, and the wave does
not not encounter a critical point where the nonlinear coieffita passes through zero. The
variable coefficient extended KdV equation (5) has only ndgeeceived similar attention,
most notably by Grimshaw et al (2004) who used it to model nicsiaternal solitary waves
over three typical oceanic shelves. Their numerical sitraria again demonstrated the va-
lidity of the slowly-varying solitary wave in the framework (5), again provided that the
background environment varies slowly relative to the agjitwave, and that the wave does
not not encounter critical point where one of the nonlinesfficientsa. 5 pass through zero.

Finally, we note that our discussion of periodic waves hantfer the special case when
the parameters vary slowly with only. While this is a valid technical assumption, and is
made here to facilitate comparison with the correspondiegty for slowly-varying solitary
waves, it is usually not a very practical assumption, as fiaceéit assumes that the periodic
wave train has infinite length. A more realistic assumpt®noi allow the slowly varying
periodic wave train to vary with both' = ex andT = et. This case can also be considered
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using the Whitham averaging procedure, and indeed, suatedpae modulated periodic
waves have been extensively studied for constant coeffieiesiution equations (see, for
instance, Kamchatnov 2000). The outcome is usually a sedmfrrear hyperbolic equations
for the wave parameters, widely-known as the Whitham mditumaequations. However,
their counterpart for the present case of evolution eqoatisith variable coefficients has
only rarely been considered but see, for instance, Myini@mimhshaw (1994) or Kamchatnov
(2004).
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