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Internal solitary waves in a variable medium
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In both the ocean and the atmosphere, the interaction of a density stratified flow with topog-
raphy can generate large-amplitude, horizontally propagating internal solitary waves. Often
these waves are observed in regions where the waveguide properties vary in the direction
of propagation. In this article we consider nonlinear evolution equations of the Korteweg-
de Vries type, with variable coefficients, and use these models to review the properties of
slowly-varying periodic and solitary waves.
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1 Introduction

Solitary waves are nonlinear waves of quasi-permanent form, first observed by Russell (1844)
in a now famous report on his observations of a free surface solitary wave in a canal, and his
subsequent experiments. Theoretical work by Boussinesq (1871) and Rayleigh (1876) later
established a theoretical model, and then Korteweg and de Vries (1895) derived the well-
known equation which now bears their names. But it was not until the second half of the
twentieth century that it was realised that the Korteweg-deVries equation was a valid model
for solitary waves in a wide variety of physical contexts. Ofprincipal concern here are the
large-amplitude internal solitary waves which propagate in density-stratified fluids such as the
ocean and atmosphere (see, e.g., Apel (1995), Grimshaw (2001), Holloway et al (2001) and
Rottmann and Grimshaw (2001)). They owe their existence to abalance between nonlinear
wave-steepening effects and linear wave dispersion, and hence can be effectively modeled by
nonlinear evolution equations of the Korteweg-de Vries (KdV) type.

Many studies based on KdV-type models have used equations with constant coefficents.
However, particularly in the oceanic case, the waves are propagating on a background whose
properties vary in the wave propagation direction. In this situation, an appropriate model
equation is the variable-coefficient Korteweg-de Vries (vKdV) equation

ητ + cηχ +
cQχ

2Q
η + µηηχ + ληχχχ = 0 , (1)

Hereη(χ, τ) is the amplitude of the wave, andχ, τ are space and time variables respectively.
The coefficientc is the relevant linear long wave speed, andQ is the linear magnification
factor, defined so thatQη2 is the wave action flux; the coefficientsµ andλ of the nonlinear and
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4 Roger Grimshaw: Internal solitary waves in a variable medium

dispersive terms are determined by the waveguide properties of the specific physical system
being considered. In a variable medium, each of these is a function ofχ. The vKdV equation
was derived by Johnson(1973) for water waves and by Grimshaw(1981) for internal waves
(for a recent review, see Grimshaw 2001). The derivation assumes the usual KdV balance that
the amplitudeη has the same order as the dispersion, measured by∂2/∂χ2, and in addition
assumes that the waveguide properties (i.e. the coefficients c, Q, µ, λ) vary slowly so that
Qχ/Q for instance is of the same order as the dispersion. In this scenario, the first two terms
in (1) are the dominant terms, and it is useful to make the transformation

A =
√

Q η , t =

∫ χ dχ

c
, x = t − τ . (2)

Substitution into (1) yields, to the same order of approximation as in the derivation of (1),

At + αAAx + δAxxx = 0 (3)

α =
µ

c
√

Q
, δ =

λ

c3
. (4)

Here the coefficientsα, β are functions oft alone. Note that althought is a variable along the
spatial path of the wave, we shall subsequently refer to it asthe “time”. Similarly, althoughx
is a temporal variable, in a reference frame moving with speed c, we shall subsequently refer
to it as a ”space” variable.

In this paper, we shall review the theory of slowly-varying periodic and solitary waves
based on the variable-coefficient Korteweg-de Vries equation (3) in Section 2. Because in-
ternal solitary waves are often of large amplitudes, it is sometimes useful to include a cubic
nonlinear term in (1) and (3), which then becomes (see the review by Grimshaw 2001),

At + αAAx + βA2Ax + δAxxx = 0 . (5)

In Section 3, we describe the slowly-varying solitary wave solutions of this extended vKdV
equation (5), and in particular examine the behaviour at certain critical points where eitherα
or β vanish.

2 Slowly-varying waves in the Korteweg-de Vries equation

2.1 Periodic waves

We now suppose that the coefficientsα, β are slowly varying, and write

α = α(T ) , δ = δ(T ) , T = εt , ε << 1 . (6)

next we seek a standard multi-scale expansion for a modulated periodic wave, namely

A = A0(θ, T ) + εA1(θ, T ) + · · · , (7)

θ = k(x − 1

ε

∫ T

V (T ) dT ) . (8)
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Here it is assumed thatA is periodic inθ with a fixed period of2π. Substitution into (3) yields
at the leading orders

−V A0θ + αA0A0θ + δk2A0θθθ = 0 , (9)

−V A1θ + α(A0A1)θ + δk2A1θθθ = −1

k
A0T . (10)

Each of these is essentially an ordinary differential equation with θ as the independent vari-
able, and withT as a parameter.

The solution of (9) is the well-known cnoidal wave

A0 = a{b(m) + cn2(γθ; m)} + d , (11)

where b =
1 − m

m
− E(m)

mK(m)
, αa = 12mδγ2k2 , (12)

and V = αd +
αa

3

{

2 − m

m
− 3E(m)

mK(m)

}

. (13)

Herecn(x; m) is the Jacobian elliptic function of modulusm, 0 < m < 1, K(m), E(m) are
the elliptic integrals of the first and second, The amplitudeis a, the mean value ofA over
one period isd, while the spatial period is2K(m)/γk. But sinceA0 is 2π-periodic inθ we
see thatγ = K(m)/π. As the modulusm → 1, this becomes a solitary wave, since then
b → 0 and cn2(x) → sech2(x); in this limit γ → ∞, k → 0 with γk = K held fixed.
As m → 0, γ → 1/2, and it reduces to sinusoidal waves of small amplitudea ∼ m and
wavenumberk. The cnoidal wave (11) contains three free parameters, which here depend on
the slow variableT ; we take these to be the amplitudea, the mean leveld and the modulus
m, so that equations (12, 13) then determinek, V respectively.

The task now is to determine howA0 depends onT . There are two principal methods
used to achieve this. One is the so-called Whitham averagingmethod, where one seeks three
appropriate conservation laws for the vKdV equation (3), inserts the cnoidal wave into these
laws, and then averages over the phaseθ (see Whitham 1974). It is important tha, in addition,
one should also use the law for conservation of waves, namely

kT + ωX = 0 , (14)

where hereX = εx andω = kV . But in the present case, there is noX-dependence, and so
this readily yields the result thatk is a constant. For the vKdV equation, it is convenient to
take the remaining two conservations laws as those for “mass” and “momentum”,

∂

∂t

∫ 2π

0

Adθ = 0 , (15)

∂

∂t

∫ 2π

0

A2dθ = 0 . (16)

Each of these is readily established from (3). Note that although we shall call these the laws
for conservation of mass and momentum, the integrands do notnecessarily correspond to the
corresponding physical entities. Indeed, (16) is in fact the law for conservation of wave action
flux. Substitution of (11) into (15) readily shows thatd is a constant. Hence the remaining
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variable, namely the wave amplitudea, can now be found by substituting (11) into (16). The
result is

a2{ 1

2π

∫ 2π

0

cn4(γθ; m) dθ − b(m)2} = constant. (17)

or
a2

m2
{(2 − 3m)(1 − m) +

(4m − 2)E(m)

K(m)
− 3m2b(m)2} = constant. (18)

Substitution of the expressions (12) into (18) finally yields the expression for the variation of
the modulusm,

F (m) ≡ K(m)2{(4−2m)E(m)K(m)−3E(m)2−(1−m)K(m)2} = constant
α2

δ2
.

(19)

This expression was obtained by Ostrovsky and Pelinovsky (1970, 1975) and Miles (1979)
for the special case of surface water waves, and is plotted inFigure 1, which shows thatF (m)
is a monotonically increasing function ofm. It follows that asα/δ increases so doesm. Two
limiting situations are of interest. First, if the nonlinear coefficientα decreases towards zero,
then so does the modulusm where it can be shown thatF (m) ∼ m2 asm → 0; it follows
that the modulusm ∼ α, but remarkably the amplitudea is finite in this limit. On the other
hand, if the dispersive coefficientδ → 0, which is often the case when internal waves move
in to shallow water, thenm → 1 and the waves become more like solitary waves.

An alternative to the Whitham averaging procedure, is to continue the asymptotic expan-
sion to the next order, and invoke the condition thatA1 is a periodic function ofθ. Indeed, it is
implicit in the Whitham averaging procedure that the higher-order terms in the expansion have
this property. Although it can be shown that the presence of asuitable underlying Lagrangian
usually ensures that this is so (see, for instance, Whitham 1974), we shall nevertheless verify
it directly here for the first-order term. This is given by (10) in which the right-hand side is
now a known periodic function ofθ, given by (11). A necessary and sufficient condition for
A1 to be periodic inθ is that the right-hand side of (10) should be orthogonal to the periodic
solutions of the adjoint to the homogeneous operator on the left-hand side. This adjoint is

−V A1θ + αA0A1θ + δk2A1θθθ = 0 . . (20)

It is readily seen that two solutions of (20) are1, A0, both of which are periodic. A third
solution can be found by the variation-of-parameters method, but is not periodic. Hence
there are two orthogonality conditons, the first showing that d is a constant, while the second
condition recovers the momentum conservation law (16). These are then supplemented by the
equation for conservation of waves, which as before yields thatk is a constant.

2.2 Solitary waves

The results obtained above for a slowly-varying periodic wave cannot be extrapolated to the
case of a slowly-varying solitary wave, as the limitsm → 1 andε → 0 do not commute. In
physical terms, the basis for the validity of the slowly-varying periodic wave is that the local
period (i.e.1/kV ) should be much less than the scale of the variable medium (i.e. 1/ε). The
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Fig. 1 A plot of F (m) (19) versusm.

limit m → 1 in (11, 12, 13) requires thatγ → ∞, k → 0 with γk = K held constant, and
so the period technically becomes much larger than the scaleof the medium. A new concept
of slowly-varying is needed, which in physical terms is thatthe half-width (i.e. the width of
the wave at the level of one half of the maximum amplitude) should be much less than1/ε.
Technically we proceed as above and invoke a multi-scale asymptotic expansion of the form
(6. 7). but now replace (8) with

φ = x − 1

ε

∫ T

V (T ) dT . (21)

A is not now required to be periodic inφ. Instead we consider the domain−∞ < φ < ∞,
and require thatA remain bounded in the limitsφ → ±∞. We can suppose without loss of
generality thatδ > 0, since the alternative case is recovered by replacingA, x with −A,−x
respectively. Then, small-amplitude waves will propagatein the negativex-direction, and we
can suppose thatA → 0 asφ → ∞. However, it will transpire that we cannot impose this
boundary condition asφ → −∞.

The counterpart of (9, 10) is

−V A0φ + αA0A0φ + δA0φφφ = 0 , (22)

−V A1φ + α(A0A1)φ + δA1φφφ = −A0T . (23)
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8 Roger Grimshaw: Internal solitary waves in a variable medium

But now the solution forA0 is taken to be the solitary wave (obtained from (11, 12, 13) bythe
limit m → 1 as described above),

A = asech2(Kφ) , (24)

where V =
αa

3
= 4δK2 . (25)

A background termd can be added as in (11), but is readily shown to be a constant, and can
then be removed by a Galilean transformation. At the next order, we seek a solution of (23)
for A1 which is bounded asφ → ±∞, and in factA1 → 0 asφ → ∞. As before, the adjoint
equation to (23) is

−V A1φ + αA0A1φ + δA1φφφ = 0 . (26)

Two solutions are1, A0; while both are bonded, only the second solution satisfies the condtion
thatA1 → 0 asφ → ∞. A third solution can be constructed using the variation-of-parameters
method, but it is unbounded asφ → ±∞. Hence only one othogonality condition can be
imposed, namely that the right-hand side of (23) is orthogonal toA0, which leads to

∂

∂T

∫

∞

−∞

A2
0 dφ = 0 . (27)

As the solitary wave (24) has just one free parameter (e.g. the amplitudea), this equation
suffices to determine its variation. Substituting (24, 25) into (27) leads to the law

a3 = constant
α

δ
. (28)

We now recall that the vKdV equation possesses two conservation laws

∂

∂t

∫

∞

−∞

Adx = 0 , (29)

∂

∂t

∫

∞

−∞

A2dx = 0 , (30)

for mass and momentum respectively; compare (15, 16) for thecase of periodic waves. The
condition (27) is easily recognized as the leading order expression for conservation of mo-
mentum (30). But since this completely defines the slowly-varying solitary wave, we now see
that this cannot simultaneously conserve total mass. This is apparent when one examines the
solution of (23) forA1, from which it is readily shown that althoughA1 → 0 asφ → ∞,
A1 → H1 asφ → −∞ where

V H1 = − ∂

∂T

∫

∞

−∞

A0 dx , (31)

or H1 =
1

3αK

aT

a
. (32)

This non-uniformity in the slowly-varying solitary wave has been recognized for some time,
see, for instance, Grimshaw and Mitsudera (1993) and the references therein. The remedy is
the construction of a trailing shelfAs of small amplitudeO(ε) but long length-scaleO(1/ε),
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which thus hasO(1) mass, butO(ε) momentum. It resides behind the solitary wave, and
to leading order has a value independent ofT , so thatAs = εAs(X) whereX = εx for
X < Φ(T ) =

∫ T
V (T ) dT ; it is determined by its value at the locationX = Φ(T ) of

the solitary wave, namelyAs(Φ(T )) = H(T ) (32). At higher orders inε the shelf itself
will evolve and may generate secondary solitary waves (El and Grimshaw, 2002). It may
readily be verified that the slowly-varying solitary wave and the trailing shelf together satisfy
conservation of mass.

The expression (28) shows that the amplitude increases (decreases) asα/δ increases/decreases.
Then, from (32) we see that a slowly-varying solitary wave ofincreasing (decreasing) ampli-
tude, will generate a trailing shelf of the same (opposite) polarity (recall that the sign ofα
determines the polarity of the solitary wave. A particular case of interest is when the non-
linear coefficientα passes through zero, whileδ stays finite. Suppose this occurs atT = 0,
where, without loss of generality, we may suppose thatα passes from positive to negative
values asT increases. Initially the solitary wave is located inT < 0 and has positive polarity.
Then, near the transition point, the amplitude of the wave decreases to zero asa ∼ α1/3, while
K ∼ α2/3; the momentum of the solitary wave is of course conserved (atleast to leading or-
der), the mass of the solitary wave increases as1/α1/3, its speed decreases asα4/3, and the
amplitudeH1 of the trailing shelf just behind the solitary wave grows as−1/α8/3; the total
mass of the trailing shelf grows as−1/α1/3, in balance with that of the solitary wave, while
the total mass remains a positive constant. Thus the solitary wave itself is destroyed as the
wave attempts to pass through the critical pointα = 0. The structure of the solution beyond
this critical point has been examined numerically by Grimshaw et al (1998), who showed that,
in essence, the shelf passes through the critical point as a negative disturbance, which then be-
ing in an environment withα < 0, can generate a train of solitary waves of negative polarity,
riding on a positive pedestal. Of course, these conclusionsmay need to be modified when the
cubic nonlinear term in (5) is taken into account near the critical point (Grimshaw et al, 1999),
and this issue is taken up in the next section.

3 Slowly-varying solitary waves in the extended Korteweg-de Vries
equation

3.1 Periodic waves

Although the main focus in this section is on solitary waves,we shall briefly describe the
analogous theory for periodic waves. We again use the multi-scale asymptotic expansion (6,
7, 8), and substitute this into (5). The leading order term isnow given by

A0 = D(T ) + V (θ, T ) , V =
H

1 + Bcn2γθ
, (33)

where α̂H = 12δγ2k2(
3m

B
+ 4m − 2 − B(1 − m)) , (34)

βH2 = 24δγ2k2(1 − m − m

B
)(B + 1) , (35)

V̂ = 4δγ2k2(
3m

B
+ 2m − 1) , (36)

and α̂ = α + 2βD , V̂ = V − αD − βD2 . (37)
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10 Roger Grimshaw: Internal solitary waves in a variable medium

The spatial period is again2K(m)/γk, and so, sinceA0 is 2π-periodic in θ we see that
γ = K(m)/π. The amplitude of the wave isa = HB/1 + B. Whenβ < 0 there is a
single family with0 < B < m/(1 − m), while if β > 0 there are two families,−1 <
B < 0, m/(1 − m) < B < ∞. The KdV caseβ = 0 is recovered by puttingH = a/B,
D = d − a/B and taking the limitB → 0 with a, d, γ fixed. As for the KdV case discussed
in section 2.1, the periodic solution contains three free parameters, which here we take to be
m, B, D. The relations (34, 35. 36) then determinek, H, V . Note that the limitB → m/1−m
corresponds to the limitH, k → 0 with H ∼ k2 andm fixed,0 < m < 1. On the other hand,
the limitsB → −1, B → ∞ produce singular solutions.

The determination of howA0 depends onT , that is, how to determineH, B, D as functions
of T follows the same procedure described in section 2.1. Thusk is a constant, and then we
use the conservation laws (15, 16). The first determinesD by the requirement that the mean
level ofA0 be a constant, sayd, and the second can then be regarded as determining eitherH
or B. Thus, we get

D +
1

2π

∫ 2π

0

V (θ) dθ = d . (38)

1

2π

∫ 2π

0

V (θ)2 dθ = (D − d)2 + constant. (39)

The integrals in (38, 39) can now be evaluated in terms of elliptic integrals,

1

2π

∫ 2π

0

V (θ) dθ = M(B, m) =
1

(1 + B)K(m)
Π(

B

1 + B
, m) , (40)

1

2π

∫ 2π

0

V (θ)2 dθ =
∂

∂B
(BM(B, m)) . (41)

=
(C1Π(B/(1 + B)) + C2K(m) + C3E(m))

(2(1 + B)2(m − B(1 − m))
, (42)

where C1 = 3m + (4m − 2)B − (1 − m)B2 ,

C2 = −m + (1 − 2m)B + (1 − m)B2 , C3 = −B(1 + B) .

HereΠ(n, m) is the complete elliptic integral of the third kind. The requirement thatk is a
constant, leads to a relationship betweenm andB, found by eliminatingH from (34, 35).
Then the relations (38, 39) provide explicit expressions linking the wave parametersB (or
m) andD with the environmental parametersα, β, δ. However, these expressions are quite
complicated to unravel, and we shall not this matter any further here.

3.2 Solitary waves

As for the vKdV equation (3) we use the same multi-scale asymptotic expansion used in
section 2.2, that is, (6, 7) with (21). The leading term is thesolitary wave, which can be
obtained from (33) in the limitm → 1 (noting that the paramtersH, B change their meaning
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in the process), or directly from (5),

A0 =
H

1 + B coshKφ
, (43)

where V =
αH

6
= δK2 , (44)

and B2 = 1 +
6δβK2

α2
. (45)

As before, a background termd can be added as in (11), but is readily shown to be a
constant, and can then be removed by a Galilean transformation. The amplitude isa = H/1+
B. The family of solutions (43) depend on a single parameter, which can conveniently be
taken asB, and are displayed in Figure 2. As before, we takeδ > 0 without loss of generality.
Then, forβ < 0 there is just one branch of solutions, with0 < B < 1; they range from
small-amplitude solitary waves of KdV-type with the familiar “sech2”-profile whenB → 1,
to a limiting wave of amplitude−α/β asB → 0; this limiting wave is characterized by a flat
top, and are sometimes called “table-top” waves. Forβ > 0 there are two branches; one has
1 < B < ∞ and ranges from small-amplitude KdV-type waves whenB → 1, to arbitrarily
large waves with a “sech”-profile asB → ∞. The other branch has has the opposite polarity,
exists for−∞ < B < −1, and ranges from arbitrarily large waves with a “sech”-profile to a
limiting algebraic solitary wave of amplitude−2α/β. Solitary waves with smaller momentum
cannot exist, and from the point of view of the associated spectral problem are replaced by
breathers (see, for instance, Clarke et al 2000, Grimshaw etal 1999, Pelinovsky and Grimshaw
1997).

We now follow the same procedure described in section 2.2. That is, the determination of
how the key parameterB of (43) varies withT is found either by considering the next-order
term in the expansion, or equivalently by using the conservation law (30) for momentum,
which can easily be shown to also hold for the variable-coefficient extended KdV equation
(5). The outcome is that (27) holds for the solitary wave (43)and so we get that

H2

K

∫

∞

−∞

du

(1 + B coshu)2
= constant, (46)

or G(B) = constant| β3

δα2
|1/2 , (47)

where G(B) = |B2 − 1|3/2

∫

∞

−∞

du

(1 + B coshu)2
. (48)

The integral term inG(B) can be explicitly evaluated, and so we finally get

B2 > 1 : G(B) = 2(B2 − 1)1/2 ∓ 4arctan

√

B − 1

B + 1
, (49)

0 < B < 1 : G(B) = 4arctanh

√

1 − B

1 + B
− 2(1 − B2)1/2 . (50)

The alternative signs in (49) correspond to the casesB > 1 or B < −1. Expressions of these
forms have ben considered by Egorov (1993) for water waves, and Grimshaw et al (1999,
2004) for internal waves.
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Fig. 2 The solitary wave family (43). The upper panel is forβ < 0 and the lower panel is forβ > 0; in
both panelsα > 0, δ > 0.
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Next, just as for the vKdV case discussed in section 2.2, the slowly-varying solitary wave
is accompanied by a trailing shelf, in order to conserve total mass. As before, to leading order
it is given byAs = As(X) whereX = εx for X < Φ(T ) =

∫ T
V (T ) dT , and is determined

by its value at the locationX = Φ(T ) of the solitary wave, namelyAs(Φ(T )) = H1(T ),
where

V H1(T ) = −∂M

∂T
, (51)

where M(T ) =

∫

∞

−∞

A0dφ , (52)

is the mass of the solitary wave. Substitution of (43, 44) into (52), yields

B2 > 1 : M = ±|6δ

β
|1/2 4arctan

√

B − 1

B + 1
, (53)

0 < B < 1 : M = ±|6δ

β
|1/2 4arctanh

√

1 − B

1 + B
. (54)

Here the alternative signs in (53) and (54) correspond to thecasesαB > 0 or αB < 0.
The expression (46) provides an explicit formula for the dependence ofB on the envi-

ronmental parametersα, β, δ. It is readily shown thatG(B) is a monotonically increas-
ing function ofB for 1 < B < ∞, and is a monotonically decreasing function ofB for
−∞ < B < −1 and for0 < B < 1. In general, as|β3/δα2| → ∞, then so doesG(B); we
infer that then, ifβ < 0 so that0 < B < 1, B → 0 and the wave approaches the limiting
“table-top” shape. On the other hand ifβ > 0 and1 < B < ∞ thenB → ∞ and the wave
shape approaches the “sech”-profile, while if−∞ < B < 1, thenB → ∞ and the wave ap-
proaches the limiting algebraic solitary wave. The behaviour of the wave amplitude in these
limits depends on the behaviour of each of the parametersα, β, δ.

We will now return to the special case of interest whenα passes through zero, whileδ
stays finite. This was considered in section 2.2 when the cubic nonlinear term in the vKdV
equation (5) is omitted, and now we reconsider this limit when β stays finite. First, let us
suppose thatβ < 0, 0 < B < 1. Then asα → 0, we see from (46) and (50) thatB → 0
with B ∼ 2 exp (−1/2|α|). Thus the approach to the limiting “table-top” wave is quiterapid.
From (44. 45) we see that in this limit,K ∼ |α| and the amplitudea ∼ |α|. Curiously, this
is more rapid destruction of the solitary wave than for the case whenβ = 0. At the same
time, the massM (54) of the solitary wave grows as|α|. The overall scenario afterα has
passed through zero is similar to that described above for the vKdV equation (3) and has been
discussed by Grimshaw et al (1999). Essentially the trailing shelf passes through the critical
point as a disturbance of the opposite polarity to that of theoriginal solitary wave, which then
being in an environment with the opposite sign ofα, can generate a train of solitary waves of
the opposite polarity, riding on a pedestal.

Next, let us suppose thatβ > 0 so that1 < B2 < ∞ There are the two sub-cases to
consider,B > 0 or B < 0, when the the solitary wave has the same or opposite polarityto
α. Then, asα → 0, |B| → ∞ as |B| ∼ 1/|α|. It follows from (44. 45) that thenK ∼ 1,
h ∼ 1/|α| and a ∼ 1. It follows that the wave adopts the “sech”-profile, but hasfinite
amplitude, and so can pass through the critical pointα = 0 without destruction. Note that
here the massM (53) is finite.
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Finally, we consider the situation whenβ → 0. In this situation we see from (47) that
G ∼ |β|3/2 and so|B| → 1. There are three sub-cases to consider. First, suppose that
initially β < 0 and so0 < B < 1. Then it follows from (50) that1 − B ∼ |β| and so the
wave profile becomes the familiar KdV “sech2”-shape. Also, it is readily shown from (44.
45) thatK ∼ 1, a ∼ 1, M ∼ 1 and so the wave can pass through the critical pointβ = 0
without destruction. However, after passage through the critical point, the wave has moved
to a different solitary branch (see Figure 2), and this may change its ultimate fate. Second,
suppose that initiallyβ > 0 and1 < B < ∞. Then it follows from ( 49) thatB − 1 ∼ β
and so again the wave profile becomes the familiar KdV “sech2”-shape, whileK, a, M ∼ 1.
This is just the reverse of the first case and again the wave canpass through the critical point
β = 0 without destruction. Third, suppose that initiallyβ > 0 and−1 > B > −∞. In
this case it an be shown from (49) thatG(B) decreases from∞ to a finite value of2π asB
increases from−∞ to−1. Consequently the limitβ → 0 in (47) cannot be achieved. Instead
asβ decreases the limitB = −1 is reached, when the wave has become an algebraic solitary
wave. Presumably a further decrease inβ could generate breathers.

4 Discussion

In this paper we have reviewed the procedure for determiningthe behaviour of an internal
solitary wave propagating in a variable medium. The discussion has been based on the variable
coefficient KdV equation (3) and its extension to (5) which takes account of cubic as well as
quadratic nonlinearity. The results have been put into context by a brief discussion of the
corresponding theory for periodic waves; the essential difference between a solitary wave and
a periodic wave is that while both deform to conserve momentum, the solitary wave by itself
cannot simultaneously conserve mass and so generates a trailing shelf, whereas the periodic
wave has two extra degrees of freedom and hence can also simultaneously conserve both mass
and wavenumber. This difference is crucial when one examines the behaviour near critical
points where one of the nonlinear coefficients in (3) or (5) passes through zero.

Application of the theory presented here is widespread for the variable coefficient KdV
equation (3) and its validity has been confirmed by several numerical simulations. Essen-
tially, the solitary wave will deform adiabatically (that is, conserving its momentum) as long
as the background environment varies slowly relative to thesolitary wave, and the wave does
not not encounter a critical point where the nonlinear coefficientα passes through zero. The
variable coefficient extended KdV equation (5) has only recently received similar attention,
most notably by Grimshaw et al (2004) who used it to model oceanic internal solitary waves
over three typical oceanic shelves. Their numerical simulations again demonstrated the va-
lidity of the slowly-varying solitary wave in the frameworkof (5), again provided that the
background environment varies slowly relative to the solitary wave, and that the wave does
not not encounter critical point where one of the nonlinear coefficientsα.β pass through zero.

Finally, we note that our discussion of periodic waves has been for the special case when
the parameters vary slowly withT only. While this is a valid technical assumption, and is
made here to facilitate comparison with the corresponding theory for slowly-varying solitary
waves, it is usually not a very practical assumption, as in effect it assumes that the periodic
wave train has infinite length. A more realistic assumption is to allow the slowly varying
periodic wave train to vary with bothX = εx andT = εt. This case can also be considered
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using the Whitham averaging procedure, and indeed, such space-time modulated periodic
waves have been extensively studied for constant coefficient evolution equations (see, for
instance, Kamchatnov 2000). The outcome is usually a set of nonlinear hyperbolic equations
for the wave parameters, widely-known as the Whitham modulation equations. However,
their counterpart for the present case of evolution equations with variable coefficients has
only rarely been considered but see, for instance, Myint andGrimshaw (1994) or Kamchatnov
(2004).
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