figshare
Browse
ifra_a_1355054_sm6903.pdf (259.53 kB)

Induction of reactive oxygen species by diphenyl diselenide is preceded by changes in cell morphology and permeability in Saccharomyces cerevisiae

Download (259.53 kB)
journal contribution
posted on 2017-08-25, 09:25 authored by Leticia Selinger Galant, Marcos Martins Braga, Diego de Souza, Andreza Fabro de Bem, Luca Sancineto, Claudio Santi, Joao Batista Teixeira da Rocha

Organoselenium compounds, such as diphenyl diselenide (PhSe)2 and phenylselenium zinc chloride (PhSeZnCl), show protective activities related to their thiol peroxidase activity. However, depending on experimental conditions, organoselenium compounds can cause toxicity by oxidising thiol groups of proteins and induce the production of reactive oxygen species (ROS). Here, we analysed the toxicity of (PhSe)2 and PhSeZnCl in yeast Saccharomyces cerevisiae. Cell growth of S. cerevisiae after 1, 2, 3, 4, 6, and 16 h of treatment with 2, 4, 6, and 10 μM of (PhSe)2 was evaluated. For comparative purpose, PhSeZnCl was analysed only at 16 h of incubation at equivalent concentrations of selenium (i.e. 4, 8, 12, and 20 μM). ROS production (DCFH-DA), size, granularity, and cell membrane permeability (propidium iodide) were determined by flow cytometry. (PhSe)2 inhibited cell growth at 2 h (10 μM) of incubation, followed by increase in cell size. The increase of cell membrane permeability and granularity (10 μM) was observed after 3 h of incubation, however, ROS production occurs only at 16 h of incubation (10 μM) with (PhSe)2, indicating that ROS overproduction is a more likely consequence of (PhSe)2 toxicity and not its determinant. All tested parameters showed that only concentration of 20 μM induced toxicity in samples incubated with PhSeZnCl. In summary, the results suggest that (PhSe)2 toxicity in S. cerevisiae is time and concentration dependent, presenting more toxicity when compared with PhSeZnCl.

Funding

This paper received the financial support from CNPq, CAPES, and FAPERGS.

History

Usage metrics

    Free Radical Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC