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ABSTRACT 
Traffic congestion and road accidents are two external costs of transport and the reduction of 
their impacts is often one of the primary objectives for transport policy makers. The 
relationship between traffic congestion and road accidents however is not apparent and less 
studied. It is speculated that there may be an inverse relationship between traffic congestion 
and road accidents, and as such this poses a potential dilemma for transport policy makers. 
This study aims to explore the impact of traffic congestion on the frequency of road accidents 
using a spatial analysis approach, while controlling for other relevant factors that may affect 
road accidents. The M25 London orbital motorway, divided into 70 segments, was chosen to 
conduct this study and relevant data on road accidents, traffic and road characteristics were 
collected. A robust technique has been developed to map M25 accidents onto its segments. 
Since existing studies have often used a proxy to measure the level of congestion, this study 
has employed a precise congestion measurement. A series of Poisson based non-spatial (such 
as Poisson-lognormal and Poisson-gamma) and spatial (Poisson-lognormal with conditional 
autoregressive priors) models have been used to account for the effects of both heterogeneity 
and spatial correlation. 

The results suggest that traffic congestion has little or no impact on the frequency of 
road accidents on the M25 motorway. All other relevant factors have provided results 
consistent with existing studies.  
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1 INTRODUCTION 
Traffic congestion and road accidents are two important externalities created by road users. 
Increased travel time caused by traffic congestion imposes social costs to road users, both in 
terms of economic loss and also the reduced quality of life and mobility. The costs of road 
traffic accidents to individuals, property, and society in general have also been significant.  

Traffic congestion and accidents both impose a burden to society, and as such it is 
important to reduce their impacts. An ideal solution would be to reduce them simultaneously 
but this may not be possible, however, since it is speculated that there may be an inverse 
relationship between traffic congestion and road safety (Shefer and Rietveld, 1997). Shefer 
and Rietveld (1997) hypothesize that in a less congested road network, the average speed of 
traffic would be normally high, which is likely to result in more serious injuries or fatalities. 
On the other hand, in a congested road network, traffic would be slower and may cause less 
fatalities and serious injuries. This increased traffic congestion may lead to more accidents 
due to increased traffic volume; however, those accidents may be less severe.  This suggests 
that the total external cost of accidents may be less in a congested situation relative to an un-
congested situation. This poses a potential dilemma for transport policy makers since it would 
appear that traffic congestion can improve road safety; however, traffic congestion reduces 
mobility which subsequently decreases economic productivity. 

It is, therefore, important to understand the association between traffic congestion and 
road safety so that effective policies can be implemented to control both congestion and road 
safety. There are few studies in this area and the studies which exist tend to use an analytical 
approach and a weak proxy for traffic congestion. As such, more robust empirical evidence, 
and a precise congestion measurement, are required.  

The aim of this paper is to explore the effects of traffic congestion on road safety 
using a spatial analysis approach while controlling for the other contributing factors. The 
M25 London orbital motorway was used as a case study and disaggregated into 70 road 
segments. Accident data was obtained from the STATS19 national road accident database, 
and an appropriate method was developed to assign M25 accidents to the 70 road segments. 
Traffic characteristic data such as traffic delay, traffic flow and average travel speed for each 
road segment were obtained from the UK Highways Agency (UKHA1). For a precise 
measurement of the level of congestion on each road segment, a congestion index proposed 
by Taylor et al. (2000) was employed. The count of the number of traffic accidents for each 
road segment is viewed as a function of various contributing factors such as the congestion 
index, traffic flow, traffic speed, road geometry (e.g., radius of curvature and gradient) and 
road segment length. Several statistical models such as a Poisson-lognormal model, a 
Poisson-gamma model and a Poisson-lognormal model with conditional autoregressive 
(CAR) priors are used.  

The rest of the paper is structured as follows. First, a summary of current literature on 
the effect of traffic congestion on road safety and statistical models is presented. This is 
followed by a description of the data used in this study including the method to assign M25 
accidents to the correct road segments. Statistical models used in this study are then discussed 
followed by a presentation and discussion of the results. Finally, conclusions and 
recommendations for further research are discussed. 

 
 

                                                 
1 http://www.highways.gov.uk 
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2 LITERATURE REVIEW 
Although the relationship between traffic congestion and road safety is important, there 
would appear to be a dearth of literature, especially in terms of appropriate quantitative 
evidence. There is, however, analytical and empirical evidence. For example, Shefer (1994) 
proposed the hypothesis that there is an inverse relationship between congestion and road 
fatalities, in which volume over capacity ratio (V/C) was used as a proxy to measure the level 
of congestion. A further study by Shefer and Rietveld (1997) investigated the link between 
congestion and safety on highways. They use a similar hypothesis and provide empirical 
evidence by comparing fatality rates throughout the day finding that during peak hours the 
fatality rate is obviously lower than other times of the day. Due to data unavailability they 
examined a proposed model by using a simulated dataset rather than real-world data. 

These studies used traffic density as a simple proxy for congestion, which may not 
represent congestion characteristics properly. Congestion and traffic density are not 
equivalent concepts and it is unclear how the congestion level evolves with respect to density. 
It was suggested that a V/C value greater than 0.77 is viewed as congested (Boarnet et al., 
1998). It is likely that congestion increases are not proportional to density increases. 
Additionally, their hypothesis needs to be confirmed with real-world data. 

A recent study on the effects of traffic congestion on road safety was conducted by 
Noland and Quddus (2005), who investigate congestion and safety in London using a spatial 
analysis approach. London was disaggregated into 15 366 area-wide spatial units and a series 
of Negative Binomial models were used for analysing peak time and off-peak time accidents, 
while controlling for other contributing factors . Congestion levels were measured using 
several proxy variables including an indicator variable for Inner and Outer London 
(spatially), proximate employment and employment density. Their results are indeterminate 
and the proxy variables for congestion are generally statistically insignificant in their models, 
suggesting that there is little effect of traffic congestion on road safety. This may be due to, as 
the authors suggest, the weakness of the proxies used for congestion as congestion can be 
highly localized and time-of-day specific, as such a more precise congestion measurement 
should be used to better understand the effects of congestion on safety. In addition, this study 
is based on urban conditions, and the results may be different on high speed roads (e.g. 
motorway). 

Besides these studies aiming to investigate the effect of traffic congestion on road 
safety, other studies provide evidence from various other aspects. For example, by 
investigating single and multi-vehicle highway crash rates, Ivan et al. (2000) found that the 
morning peak period is the safest time. A study on crash rates on French motorways (Martin, 
2002) reveals that crash rates are highest in light traffic compared to heavy traffic and night-
time and light-traffic hour crashes are much worse in terms of serious crashes, hence light 
traffic is a safety problem both in terms of crash rate and severity. Shinar and Compton 
(2004) investigated accidents through drivers’ behaviour and they found that a linear 
relationship exists between congestion and the frequency of aggressive behaviours which 
may affect road safety. 

In terms of statistical models used in spatial analysis, Poisson based models are often 
used to establish a relationship between traffic accident frequency and factors that contribute 
to accident occurrence as they are suitable for count data. The Poisson based models include 
the Poisson-lognormal model (e.g. Lord and Miranda-Moreno, 2007; Aguero-Valverde and 
Jovanis, 2008); and the Poisson-gamma model (also known as Negative Binomial model) 
which is widely used in accident analysis (e.g. Shankar et al, 1995; Milton and Mannering, 
1998; Abdel-Aty and Radwan, 2000; Lord, 2000; Amoros et al., 2003; Noland and Quddus, 
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2004; Kim et al., 2006; Haynes et al., 2007). Poisson-lognormal and Poisson-gamma models 
have the advantage in that they can accommodate overdispersion in accident data. 

Recent studies have developed methods using spatial econometrics to address the 
issues of unmeasured spatial correlation among neighbouring spatial units. Such studies were 
primarily based on a Bayesian framework in which Conditional Autoregressive (CAR) 
models are often employed to take into account spatial dependence among neighbouring 
spatial units. This method was initially used in ecological analysis and disease mapping (e.g. 
Ghosh et al., 1999; MacNab and Dean, 2001), and then recently in road accident analysis 
(Miaou et al., 2003; Aguero-Valverde and Jovanis, 2006; Li et al., 2007; Aguero-Valverde 
and Jovanis 2008). According to Aguero-Valverde and Jovanis (2006 and 2008), compared 
with non-spatial Poisson models, spatial models can generally produce consistent results and 
in some cases can better fit the data. 

This study aims to address the gap mentioned above by using the M25 motorway in 
England as a case study, in which relevant data is obtained, a precise congestion index is 
employed and a series of statistical models are tested. 

3 DATA DESCRIPTION 
In this study the M25 motorway in England was chosen to conduct this research. The M25 
motorway is an orbital motorway which encircles London, and is one of the busiest 
motorways in Europe. Hourly traffic characteristic data for the year 2006, such as average 
travel time, average travel speed, traffic flow and total vehicle delay for road segments of the 
M25 were obtained from the UK Highways Agency. According to the Highways Agency, 72 
road segments with both directions are identified on the M25 and a road segment starts or 
ends at a junction. Road segment infrastructure data, such as direction (clockwise and 
anticlockwise), number of lanes, segment length, radius of curvature and gradient were also 
obtained from the same source.  

Accident data were derived from the STATS19 UK national road accident database. 
In order to avoid a lot of motorway segments with zero or low accident counts, especially for 
the case of fatal and serious accidents, STATS19 data for 2004 to 2006 were aggregated. This 
can also ease the variability of accident frequency from year to year and this is also a 
common practice used in the previous studies (e.g. Milton and Mannering, 1998; Abdel-Aty 
and Radwan, 2000; Graham and Glaister, 2003; Haynes et al., 2007).  Only accidents 
recorded as occurring on the M25 motorway are retained. Accidents coded as junction 
accidents (about 15% of total accidents) were also excluded from the analysis. This is 
because motorway junctions are complicated in terms of road design (such as fly-overs and 
slip roads) compared to road segments and it is also difficult to obtain a measure of traffic 
flow at motorway junctions. In the STATS19 database, accident data are provided with 
reference to a location measured as points (the easting and northing coordinates in a local 
British National Grid Coordinate system). While this accident data is overlaid onto spatial 
motorway segment (centre-line) data, mismatches between them are observed. This is due to 
the error in both accident data and motorway segment data.  An appropriate method is needed 
for assigning accidents to the correct road segments. This is to ensure that the counts of the 
number of accidents for each segment are correct. Otherwise, the modelling results would be 
misleading. This method is briefly discussed.  
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3.1 Mapping accidents to the correct motorway segments 
As discussed, due to the error in accident location and the fact that accident data and spatial 
motorway network data are obtained from different sources, it is highly likely that there are 
mismatches.  This is shown in Figure 1.  
 

Insert figure 1 here 
 

In Figure 1, the dots show the locations where accidents occurred. Two solid lines 
(AB and CD) represent the centre-line of two carriageways of the motorway and the dotted 
line denotes the central barrier of the carriageways. If M refers to the location of an accident 
then a robust method is required to assign this accident correctly either on link AB or link 
CD. One can employ two variables from the available information: (1) the perpendicular 
distance from the accident point to the segment and (2) the angular difference (assuming Δθ) 
between the direction of the vehicle just before the accident and the link direction. The 
perpendicular distance and the link direction can be obtained from the coordinates of the start 
and end nodes of a segment and the direction of the vehicle just before the accident can be 
obtained from STATS19 data.  A segment is more likely to be the correct segment if the 
distance is short and the angular difference is small. Therefore, a weighting score (WS) is 
developed based on these two factors: 
 

)cos(1
i

i
i d

WS θΔ+=            0≠id  

 
where di is the perpendicular distance (in metres) from an accident point to a road segment, i , 
and Δθi is the angular difference between the direction of an accident and the direction of a 
link i (0 – 180°). The minimum value of di is set to be 1 metre and the WSi for a segment 
ranges from -1 to +2. If the WS for a segment is high then it is considered as the correct 
segment.  

In this study, if WS1 was significantly greater than WS2 (i.e. WS1 - WS2>0.32) then the 
accident was assigned to link 1. In the case where there was no significant difference between 
WS1 and WS2 (i.e. |WS1 - WS2|≤0.3) then the accidents are assigned randomly such as all 
assigned to the segments with the clockwise direction. There were about 2% such accidents 
in our data. In order to investigate the impact of randomly assigned accidents, a sensitivity 
analysis was conducted and no significant difference in the modelling results was found.  

3.2 Congestion Index 
The primary objective of this study is to investigate the effects of traffic congestion on road 
safety. Previous studies (Shefer and Rietveld, 1997; Noland and Quddus, 2005) often use a 
weak proxy for congestion and so a more precise congestion measurement is required. In this 
study, we employed the following equation proposed by Taylor et al. (2000) to estimate 
segment-level traffic congestion. This is known as the congestion index (CI): 
 

( )0 0/CI T T T= −   ( )0 0T ≠  

 
                                                 
2 0.3 is equal to 10% of the range of WS. Other threshold values such as 0.15 and 0.45 (i.e. 5% and 

15% of the range of WS respectively) for the difference between WS1 and WS2 have also been tested. The results 
are not signiciantly different.   
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where T is the actual travel time and T0 is the free flow travel time on a particular road 
segment. CI is dimensionless and independent of road segment length or road geometry, so it 
can be compared between different road segments. CI is non-negative and the higher the CI 
value the higher the level of congestion. Vehicle delay and average travel time data are 
available from the UKHA. Free flow travel time is calculated by average travel time minus 
average vehicle delay (weighted by traffic flow) for the year 2006. 

Summary statistics of the M25 motorway accidents at the segment-level, traffic 
characteristic and road infrastructure data are presented in Table 1: 

  
Insert table 1 here 

 
As can be seen in Table 1, there are 70 observations for each variable. Two road 

segments were excluded from the total 72 road segments because data for some key variables 
for these two segments was missing. Average vehicle speed is weighted (by traffic flow) 
harmonic mean of hourly speed data. Direction is a dummy variable with 0 representing the 
anti-clockwise and 1 representing the clockwise direction. 

The spatial distribution of CI and segment-level fatal and serious injury accidents is 
shown in Figure 2. Note that the road segments in different directions (i.e. clockwise and 
anticlockwise) are close to each other and therefore, they seem to merge together in Figure 2. 
This figure gives a visual comparison between traffic congestion and accidents. It is 
noticeable that the southern segments of the M25 show a low level of traffic congestion 
(Figure 2a) but a high level of fatal and serious injury accidents (Figure 2b) suggesting that 
there may be an inverse relationship between traffic congestion and fatal and serious injury 
accidents. 

 
Insert figure 2 here 

 
A further analysis of data has been conducted to see whether there is a relationship 

between interested variables. This is presented in Figures 3 and 4.  
 

Insert figures 3 and 4 here 
 

Generally, a positive relationship can be noticed between traffic accidents and AADT 
(Figure 3). However, no clear association can be seen between traffic accidents and the 
congestion index (CI) as indicated in Figure 4. 

4 STATISTICAL MODELS 
Several statistical models suitable for count data have been considered and investigated in 
this study. Poisson based models, such as a Poisson-lognormal, a Poisson-gamma and a 
Poisson-lognormal with conditional autoregressive (CAR) priors have been recommended 
and widely used in the literature (e.g. Shankar et al, 1995; Milton and Mannering, 1998, 
Abdel-Aty and Radwan, 2000; Lord, 2000; Amoros et al., 2003; Miaou et al., 2003; Kim et 
al., 2006; Lord and Miranda-Moreno, 2007; Aguero-Valverde and Jovanis 2008; Quddus, 
2008). The base form of Poisson based model can be expressed as follows: 

 
( )~ Poissoni iY μ  

( )log i i i iv uμ α= + + +βX  
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where, 
Yi is the observed number of accidents occurred on road segment i; 
μi is the expected Poisson accident rate at road segment i; 
α is the intercept; 
Xi is the vector of explanatory variables for road segment i; 
β is the vector of coefficients to be estimated; 
vi is a random term which captures the heterogeneity effects for road segment i; 
ui is a random term which captures the spatially correlated effects for road segment i. 

 
All models are estimated under a full hierarchical Bayesian framework by using a 

software package WinBUGS (Spiegelhalte et al., 2003). Models are differentiated by 
different specifications of the random terms (i.e. vi and ui). The specification of each model is 
as follows: 

 
Poisson-lognormal model: It is of interest to test the model with heterogeneity 

effects only, so the spatially correlated effects term ui is excluded in this model. Model 
specification follows the recommendations used in the WinBUGS user manual (Spiegelhalte 
et al., 2003). A uniform prior distribution is assigned to α ; a highly non-informative normal 
prior is assigned to all β’s with zero mean and 100,000 variance. The prior distribution for 
uncorrelated heterogeneity term vi is a normal prior with ( )20, vN τ , where 2

vτ  is the precision 

(1/variance) with a vague gamma prior ( )0.5,0.0005Gamma . Note under this 

parameterization a gamma distribution ( )~ ,Gamma a bθ  is defined with mean ( ) /E a bθ =  

and variance  2( ) /Var a bθ = . 
Poisson-gamma model: Similar to Poisson-lognormal model, the spatial correlation 

term (ui) is excluded in this model. Also, the same prior distributions are assigned to α  and 
β’s.  The term, ( )exp iv , is assigned to a gamma prior i.e., ( ) ( )exp ~ ,iv Gamma φ φ , where φ  

is assigned to a non-vague hyper prior with ( )0.1,1.0Gamma  as suggested by Lord and 
Miranda-Moreno (2007). 

Poisson-lognormal CAR model: This model accommodates both heterogeneity and 
spatial correlation effects (i.e. vi and ui). The same priors are assigned to α ,  β’s and vi as in 
the Poisson-lognormal model. The spatial correlation term ui is modelled with a conditional 
autoregressive (CAR) model proposed by Besag (1974): 

 
2

| , ~ ,
j ijj u

i j
i i

u w
u u i j N

w w
τ

+ +

⎛ ⎞
⎜ ⎟≠
⎜ ⎟
⎝ ⎠

∑
, 

where wij denotes the weight between road segment i and j; i ij
j

w w+ =∑ ; and 2
uτ  is a scale 

parameter assumed as a gamma prior ( )0.5,0.0005Gamma .  
There are several methods to define the weights (wij) between road segments 

depending on the consideration of different neighbour structures. The weighting scheme 
could use contiguity based weights, for example, wij = 1 if spatial unit i and j are adjacent (i.e. 
shared border and/or vertex) and wij = 0 otherwise. Alternatively, distance based weights can 
be used, for example, the shorter the distance between i and j, the larger the weight (wij). In 
this study contiguity based weights are employed, and as suggested by Aguero-Valverde and 
Jovanis (2008), two different neighbouring structures are considered: first order neighbours 
and second-order neighbours. First-order neighbours are defined as road segment j is directly 
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connected to segment i and wij = 1; second-order neighbours are defined as road segment j is 
connected to first-order neighbours of segment i and wij = 1/2. wij = 0 if segment i and j are 
not neighbours to each other (first or second order). 

All models discussed in this section can be estimated using the Markov Chain Monte 
Carlo (MCMC) method under the full hierarchical Bayesian framework. The deviance 
information criterion (DIC), which can be thought as a generalization of the Akaike 
information criterion (AIC), can be used to compare goodness-of-fit and complexity of 
different models estimated under a Bayesian framework (Spiegelhalter et al., 2002). In terms 
of goodness-of-fit, the lower the DIC the better the model.  

5 MODEL ESTIMATION RESULTS AND DISCUSSIONS 
The main objective is to develop a series of models to investigate the relationship between 
traffic congestion and the frequency of different road accidents using the data from the 70 
segments of the M25 motorway. Since only few fatal accidents occurred on each segment, 
these accidents were combined with serious injury accidents. This resulted in two categories 
of accidents: (1) fatal and serious injury accidents and (2) slight injury accidents. As such, 
two models were estimated for each of the four specifications such as (1) Poisson-lognormal, 
(2) Poisson-gamma, (3) Poisson-lognormal with CAR priors (1st order neighbour) and (4) 
Poisson-lognormal with CAR priors (2nd order neighbour).  Therefore, a total of eight models 
were estimated.  

To reduce the large variation among the explanatory variables, annual average daily 
traffic (AADT) and radius of road curvature were transformed into a logarithmic scale. Other 
forms of explanatory variables have been also tested, for example, radius of curvature and 
gradient are transformed into indicator (dummy) variables and it is found that they give 
similar results. Average vehicle speed was excluded as it was found to be highly correlated 
with the congestion index (correlation coefficient: -0.71). The correlation coefficients 
between other independent variables were also examined and the maximum value was found 
to be 0.59 suggesting that multicollinearity is not a problem for the rest of the explanatory 
variables. 

The posterior means and standard deviations of the coefficients for the explanatory 
variables, the standard deviations of heterogeneity3 and spatial correlation were estimated 
using the MCMC method. Two chains were simulated with different initial values and the 
initial 20 000 iterations (for the case of fatal and serious injury accident model) and 75 000 
iterations (for the case of slight injury accident model) were discarded as burn-ins to achieve 
the convergence of the two chains. Then a further 75 000 iterations for each chain were 
performed and kept to calculate the summary statistics of interested parameters such as 
posterior means and standard deviations. The results for eights models are presented in 
Tables 2 and 3. 

 
Insert tables 2 and 3 here 

 
As can be seen in Table 2, all specifications of Poisson models produce similar results 

in terms of the set of statistically significant variables and the values of their coefficients. In 
all specifications for the case of fatal and serious injury accidents, the statistically significant 
variables are log of AADT,  length of the segment and maximum vertical grade (%). These 
variables are also found to be statistically significant across all specifications in explaining 

                                                 
3 For Poisson-gamma models the standard deviations of exp(v) are estimated. 
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the variation in the frequency of slight injury accidents on the segments of the M25 
motorway (see Table 3). However, the variable number of lanes becomes significant in all 
specifications except one (see Table 3). The posterior mean of the standard deviation of 
uncorrelated heterogeneity (v) is found to be statistically significant across all models 
suggesting that the effect of heterogeneity does exist in our accident data. Similarly, the 
posterior mean of the standard deviation of spatial correlation (u) for both types of road 
accidents is also statistically significant suggesting that road accidents are spatially correlated 
among neighbouring road segments. The effect of spatial correlation for the case of fatal and 
serious injury accidents is generally found to be slightly higher than for the case of slight 
injury accidents.  

The DIC values for different specifications are found to be the similar for both 
categories of accidents suggesting that there is no significant difference among different 
specifications tested in this study in terms of model goodness-of-fit. Generally, the Poisson-
gamma model fitted the data slightly better, especially for the case of slight injury accidents. 
However, the better statistical fit does not necessarily mean the model could better reflect the 
theory of accidents and the actual effects of relevant factors (Lord et al., 2005). The effects of 
various explanatory variables in the models are discussed below. 

5.1 Congestion index 
The congestion index was calculated for each of the M25 motorway segments to precisely 
represent the level of congestion. In the case for fatal and serious injury accidents, this 
variable showed the expected negative sign suggesting that the increased level of congestion 
is associated with the decreased level of fatal and serious injury accidents. However, this 
variable was found to be statistically insignificant in all forms of Poisson models for both 
categories of accidents. This means that the level of traffic congestion has no impact on the 
frequency of road accidents according to the data on the M25. Therefore, spatial differences 
of congestion among road segments of the M25 cannot explain the variation in road 
accidents. 

Therefore, our results do not confirm the hypothesis proposed by Shefer and Rietveld 
(1997) that traffic congestion may have an effect on road safety. This result is however in line 
with the findings of Noland and Quddus (2005) who investigated the association between 
congestion and safety in London based on area-wide data, and did not find a firm evidence 
that supported the hypothesis.  

There may be a number of reasons for the insignificance of traffic congestion in our 
models.  First, one may think that the effects of congestion might be captured by other factors 
such as speed variance and traffic flow. Literature suggests that speed variance is an 
important factor in explaining the occurrence of traffic accidents (Aljanahi et al., 1999; 
Ossiander and Cummings, 2002). This may also be true in our case in the sense that the 
congestion index (CI) used in this study does not explicitly represent how traffic speed on a 
specific segment varies at different times. Therefore, our intention was to include speed 
variance in the model. Speed variation in the literature, however, is measured by 
Acceleration noise (AN) which is also regarded as a congestion measurement (Taylor et al., 
2000). Moreover,  AN requires a considerable amount of data and due to the fact that speed 
variation is affected not just by traffic conditions (e.g. congestion) but also by driver 
behaviour this variable is not considered in this study. The effect of traffic flow is discussed 
in the following section.  

One could also explain this result by the laws of accident causation proposed by Elvik 
(2006) who offered some general regularities in order to explain the relationship between the 
risk factors and accidents. For example, the law of rare events implies that “rare events” such 
as environmental hazards would have more effect on accident rates than “regular events”; the 
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law of complexity states that the more complex traffic situation road users encounter, the 
higher probability accidents would happen; and the law of cognitive capacity implies that 
accidents are more likely to happen as cognitive capacity approaches its limits. As such it can 
be speculated that traffic congestion may have a mixed effect on road safety. On the one 
hand, traffic congestion is increasingly common (i.e. “regular events”) in a modern transport 
network, especially on a busy motorway such as the M25, so people are increasingly aware of 
it and in addition, the delay caused by congestion could give drivers more time to make 
decisions; on the other hand, traffic congestion increases the “complexity” of the traffic 
situation and drivers may need to make frequent changes (e.g. adjusting speeds) in a 
congested traffic situation. Therefore, due to these possible mixed effects, overall congestion 
may ultimately result in little or no impact on road safety. 

5.2 AADT and road segment length 
AADT and road segment length are the two most important factors explaining road accident 
frequency in the models. AADT and road segment length are both statistically significant and 
positively associated with accidents in all models. This is to be expected, as AADT and 
segment length are considered to be the main exposure to accident risks.  

The coefficient of log(AADT) indicates the elasticity of accidents with respect to 
AADT suggesting that 1% increase in AADT would increase fatal and serious injury accidents 
by 1.21% to 1.86%. The coefficient of log(AADT) for the case of slight injury accidents is 
found to be close to that for the case of fatal and serious injury accidents ranging from 1.03 to 
1.53.  The elasticity of AADT appears a little high in this study compared with some of the 
previous studies which reported that the elasticity ranges from 0.6 – 0.7 (e.g. Abdel-Aty and 
Radwan, 2000; Bird and Hashim, 2006; Aguero-Valverde and Jovanis, 2008). This may be 
because these studies were undertaken under different road conditions. For example, the 
study conducted by Abdel-Aty and Radwan (2000) was based on a “principal arterial” 
passing through the centre of Orlando in Florida. In addition, AADT was normalised by the 
number of lanes (i.e. AADT per lane) in this study. Bird and Hashim (2006) used a sample of 
rural two-lane single carriageways. A similarly study undertaken by Aguero-Valverde and 
Jovanis (2008) was also based on rural two-lane roads. Mitra et al. (2007) further showed that 
the effects of AADT on different roads are different while looking at junction accidents, and it 
was found that generally the coefficient of AADF for “major” roads is higher than “minor” 
roads. Our study was based on a major motorway which is one of the busiest in Europe and 
therefore, the higher value of the coefficient of AADT can be seen as reasonable. 

The estimates of coefficients for segment length are generally similar among different 
model specifications, which is around 0.13 for fatal and serious injury accidents and 0.15 for 
slight injury accidents. The corresponding mean elasticity4 of segment length is 0.68 for fatal 
and serious injury accidents and 0.79 for slight injury accidents. These values are found to be 
lower than some existing studies (Bird and Hashim, 2006) and higher than other studies 
(Abdel-Aty and Radwan, 2000). It can be speculated that the relationship between accident 
frequency and road segment length is non-linear. According to the universal law of learning 
(Elvik, 2006), the accident rate tends to decline as the number of kilometres travelled 
increases suggesting that such a non-linear relationship exits. Therefore, the elasticity of 
accidents with respect to segment length can be different in different scenarios. 

5.3 Other contributing factors 
                                                 
4 Mean elasticity is defined as 

x xE x
x
μ βμ β

μ μ
∂

= ⋅ = ⋅ =
∂

. 
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Other contributing factors considered in the models include the radius of road curvature, 
gradient (%), number of lanes and direction (clockwise and anti-clockwise) of the motorway. 
The radius of road curvature that reflects the degree of horizontal curvature of a road 
segment is included as literature suggests that this may have an impact on accidents (Milton 
and Mannering, 1998). However, this variable was found to be statistically insignificant in all 
models. This may be due to the fact that there is a mixed effect of road curvature (Milton and 
Mannering, 1998; Haynes et al., 2007), especially on a highly aggregated road segments. This 
may also be due to the fact that there is not enough variation in horizontal curvature among 
the M25 road segments. An indicator variable representing the high road curvature (i.e., the 
radius of curvature is less than 500m) was also tested but found to be statistically 
insignificant.  

Gradient (%) which represents the vertical grade of the segment was also included in 
the models and found to be statistically significant and positively associated with accidents in 
all models. This is consistent with the study by Milton and Mannering (1998) who used an 
indicator variable to represent vertical grade. This variable was found to be more significant 
(95% confidence level) in the Poisson-lognormal CAR models for the case of fatal and 
serious injury accidents.   

The variable representing the number of lanes is found to be statistically insignificant 
in all fatal and serious injury accident models but becomes significant and positively related 
to the frequency of slight injury accidents in all specifications except one which is the 
Poisson-lognormal with CAR priors (1st order neighbour). Direction is included in the models 
as a dummy variable (clockwise and anticlockwise) to investigate whether there is an 
association between the frequency of accidents on the M25 and its directions. Li et al. (2007) 
suggested that the roadway directions need to be differentiated to better evaluate roadway 
risks. In this study, direction was found to be statistically insignificant in all models 
suggesting that this variable does not have any effect on the accidents. 

Some other important factors such as the weather conditions and road conditions (e.g. 
pavement roughness) were not included in this study due to the data unavailability. We do not 
have access to the information about the scheduled road works (SRW) on the M25 during the 
study period. This may affect both accidents and traffic characteristics and as such the 
findings of this study.  

6 CONCLUSIONS AND FURTHER RESEARCH  
This paper has investigated the effects of traffic congestion on road accidents while 
controlling for other contributing factors such as traffic flow, segment length, number of 
lanes, curvature and gradient. A robust technique has been developed to assign M25 
accidents onto its segments and a congestion index has been used to represent the level of 
traffic congestion on each segment. A series of relevant statistical models has been employed 
to develop the relationship between the frequency of accidents and the congestion index. 
Results from the various model specifications have been generally found to be consistent 
with each other. It has been found that traffic congestion has no impact on the frequency of 
accidents (either for fatal and serious injury accidents or for slight injury accidents). This may 
be due to the impact of other factors such as traffic flow and speed variation on traffic 
congestion or their impacts on road accidents. Other factors included in the models have 
provided expected results.  

In terms of the specifications of the models, the Poisson-gamma model appeared to fit 
the data slightly better, especially for the case of slight injury accidents. Although the spatial 
model (i.e. the Poisson-lognormal with CAR priors) has implied that the spatial correlation 
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among neighbouring segments of the M25 motorway is significant, the results are very 
similar to the non-spatial models.  

One limitation of this study is that only road segments from the M25 motorway have 
been included in the analysis. There are many other motorways and A roads (major roads in 
England) connected to the M25 and it is reasonable to believe that a study including all roads 
connected to the M25 motorway may provide a better understanding on the impact of traffic 
congestion on road safety, as there will be more spatio-temporal variations in the level of 
traffic congestion and the frequency of accidents. In addition, the effects of congestion at 
junctions on accidents should be explored. 

Given the data availability, data for multiple years can be collected and a spatio-
temporal analysis can be employed to ensure that the time effects are controlled for. Clearly, 
further research is needed to fully understand the effects of traffic congestion on road safety. 
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Figure 1 Accident location and motorway centre-line data 
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(a) CI on the different segments of the M25  

 
 

 
 

(b) Fatal and serious injury accidents on the different segments of the M25 
 

Figure 2 Spatial distribution of CI and fatal and serious injury accidents on the different segments of the 
M25  
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      Fatal and serious injury accidents       Slight injury accidents 

 
Figure 3 Traffic accidents and AADT 
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      Fatal and serious injury accidents       Slight injury accidents 
 

Figure 4 Traffic accidents and Congestion Index (CI) 
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Table 1 Summary statistics of the variables 
Variable Obs Mean Std. Dev. Min Max
Accident
Fatal and serious injury accidents 70 3.8429 3.5207 0 16
Slight injury accidents 70 38.6429 30.3592 0 128

Traffic characteristics
Congestion index (CI) (‰) 70 0.2242 0.2436 0.0407 1.7874
Annual average daily traffic (AADT) (vehicles) 70 64699.39 19543.48 11343.1 96000.99
Average vehicle speed (km/h) 70 83.2113 13.1741 43.9865 106.4163

Road segment infrastructure
Road segment length (km) 70 5.2603 3.42 0.7584 15.3992
Minimum radius (m) 70 749.6679 296.8777 24.96 1815.26
Maximum gradient (%) 70 3.0971 1.1528 0.7 6.1
Number of lanes 70 3.3338 0.8311 2 6
Direction (dummy variable) 70 0.5143 0.5034 0 1  
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Table 2 Models for fatal and serious injury accidents on the M25 

Variables Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Congestion index (‰) -0.5877 0.6958 -0.4225 0.7935 -0.6934 0.7256 -0.7836 0.7485
log(AADT) 1.212** 0.4942 1.856** 0.5465 1.435** 0.4316 1.227** 0.5195
Segment length (km) 0.1351** 0.0260 0.1475** 0.0337 0.1362** 0.0241 0.1362** 0.0247
log(minimum radius) 0.234 0.2121 0.2916 0.2289 0.2525 0.1955 0.2966 0.3380
Maximum gradiant (%) 0.1868* 0.0993 0.2103* 0.1130 0.2026** 0.0912 0.2099** 0.1290
Number of lanes -0.0961 0.1601 -0.2023 0.1869 -0.0416 0.1544 0.0023 0.1892
Direction 0.0543 0.1585 0.0855 0.1957 -0.1469 0.3115 -0.1596 0.3178
Intercept -14.77** 5.0330 -22.08** 5.28 -17.49** 4.511 -15.64** 6.009
S.D. (u ) 0.1244** 0.07992 0.2376** 0.1429
S.D. (v ) 0.3229** 0.1249 0.5285** 0.0790 0.1759** 0.1427 0.149** 0.1681
DIC 283.561 281.021 282.358 284.038

Poisson‐lognormal Poisson‐Gamma Poisson‐lognormal CAR Poisson‐lognormal CAR
 (1st order neighbour)  (2nd order neigbhour)

 
* Statistically significantly different from zero (90% credible sets show the same sign) 
** Statistically significantly different from zero (95% credible sets show the same sign) 
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Table 3 Models for slight injury accidents on M25 

Variables Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Congestion index (‰) 0.1513 0.4382 -0.1181 0.4199 0.3731 0.5493 0.2966 0.4477
log(AADT) 1.492** 0.2919 1.026** 0.2346 1.525** 0.6250 1.376** 0.3756
Segment length (km) 0.1505** 0.0231 0.1582** 0.0269 0.1587** 0.0225 0.1584** 0.0206
log(minimum radius) 0.0244 0.1754 0.0526 0.1399 0.0220 0.1858 0.0647 0.1473
Maximum gradiant (%) 0.2287** 0.0871 0.1896** 0.0804 0.2285** 0.0780 0.2291** 0.0663
Number of lanes 0.1912* 0.1074 0.262** 0.1159 0.1893 0.1461 0.2237* 0.1204
Direction 0.0046 0.1328 0.0049 0.1421 -0.0788 0.2459 -0.0664 0.2250
Intercept -15.53** 3.0960 -10.55** 2.3570 -15.93** 6.0140 -14.66** 3.4880
S.D. (u ) 0.0964** 0.0882 0.1341** 0.1303
S.D. (v ) 0.4777** 0.0600 0.5291** 0.0571 0.4294** 0.0957 0.4184** 0.0790
DIC 490.053 482.197 490.286 489.130

Poisson‐lognormal Poisson‐Gamma Poisson‐lognormal CAR Poisson‐lognormal CAR
 (1st order neighbour)  (2nd order neigbhour)

 
* Statistically significantly different from zero (90% credible sets show the same sign) 
** Statistically significantly different from zero (95% credible sets show the same sign) 
 


