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 - Al2O3 nanocatalyst is better than Mn2O3 and exhibit a high humic acid 

removal. 

 - Al2O3 nanocatalyst remove humic acid using lower ozone dosage than 

common catalysts. 

 Adsorption of humic acid contributes to its catalytic ozonation. 

 Mn2O3 decomposes O3 faster than - Al2O3. 
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Abstract – The removal and decomposition of humic acids (HAs) in the presence of 

ozone and aqueous suspensions of Mn2O3 and -alumina (Al2O3) nanoparticles was 

investigated. Mn2O3 presented lower BET specific surface area (15.6 m
2
 g

-1
 vs 45.8 m

2
 

g
-1

) but a higher point of zero charge (PZC) (5.9 vs 4.2) than -Al2O3. Solution pH 

played a key role in the adsorption of HAs and catalytic oxidation on the surface of -

Al2O3 and Mn2O3 nanoparticles. The adsorption capacity of -Al2O3 at the natural pH 

of HAs in water (pH 5.5) was up to 2.903 gHAs g
-1

, but no adsorption occurred onto the 

Mn2O3 nanoparticles, due to the unfavorable surface charge at pH 5.5. In consequence, 

although Mn2O3 was a more efficient catalyst (khet = 0.7 L
-1 

min
-1 

g
-1

) than -Al2O3 (khet 

= 0.2 L
-1 

min
-1 

g
-1

) for the decomposition of O3, Mn2O3 did not exhibited catalytic action 

during the ozonation of HAs at pH 5.5. Instead, the Mn2O3 catalytic action was 

significant at pH equal to PZC (catalytic rate constant ratio k1-HAcat/ k1-HA = 1.562). 

Overall, -Al2O3 exhibited the highest catalytic removal rate of HAs during ozonation 

(k1-HAcat/ k1-HA = 2.298) due to favorable surface charge and larger specific surface area. 

The main mechanism for HAs removal in the presence of -Al2O3  involves 

simultaneous adsorption of both HAs and O3, the reaction of ozone from the bulk 

solution and the catalytic decomposition of HAs on the solid surface by ROS, through 

complex series-parallel reactions. The -Al2O3 dosage up to 0.5 g L
-1

 required to 

remove HAs by catalytic ozonation was significantly lower than in other studies 

employing granular activated carbon, iron coated zeolite or γ-alumina catalysts.  

 

Keywords: Ozonation; adsorption, manganese oxide, aluminum oxide, humic acid. 
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1. Introduction 

The removal of natural organic matter (NOM) is one of the main goals in 

drinking water treatment, since NOM can lead to undesirable color, taste and odor, as 

well as bacterial regrowth in water distribution systems. In aqueous solution, NOM is a 

complex mixture of heterogeneous organic compounds with different molecular sizes, 

structures and functionalities. Approximately 80% of NOM comprises humic acids 

(HAs) with high molecular weight [1,2]. Since NOM can react with the most common 

disinfection agents used in water treatment (e.g. chlorine, chlorine dioxide or 

chloramines) to yield hazardous disinfection byproducts, such as N-

nitrosodimethylamine [3] or trihalomethane [4], NOM must be removed prior to water 

disinfection. In general, the effectiveness of common oxidants on the destruction of the 

byproducts generated from NOM in drinking water treatment follows the order: ozone 

(O3) > chlorine > chlorine dioxide ~ UV [3].  

Ozonation is considered an effective technology for the treatment of water for 

public supply, wastewater and industrial effluents, due to its high capacity for oxidation, 

removal of color and odor and disinfection from pathogens [5]. The ozonation of HAs 

causes several structural modifications, which contribute to the removal of color and the 

reduction of absorption of visible light. Ozonation also decreases  the total organic 

carbon (TOC) of the water, the content of high molecular weight compounds and results 

in an increase in the oxygenated organic molecules [6].  

Although the ozonation of water at circumneutral and alkaline pH generates 

hydroxyl radicals (

OH), which is a highly reactive and nonselective oxidant, other 

radical oxygen species (ROS) can also be generated through the combinations of ozone 

with catalysts, with UV radiation or with other oxidants such H2O2 [7]. Ozonation at 

acidic pH, generally, is not an efficient process for the complete removal of the 
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dissolved organic matter, due to the selective nature of ozonation reactions towards 

electron rich polar compounds, and as a result of the low solubility of ozone in water 

[8].  

A more efficient water treatment process is catalytic ozonation, which has 

successfully been applied for the degradation of aqueous organic compounds, such as 

aromatic hydrocarbons, organic acids, pesticides, pharmaceuticals, and dyes [8,9]. A 

wide range of materials have been used as catalysts, notably activated carbon [2,10], 

Al2O3 [9,11,12], manganese oxides [13] and other metallic oxides [2,14–18]. However, 

due to the generally low levels of catalytic activity of these materials, high catalyst 

doses are often required (up to 10 g L
-1

) [2,9,14], in order to effectively treat the water. 

The use of such very high catalyst concentrations in industrial scale water treatment is 

often uneconomical. Among the catalysts used for the decomposition of ozone, 

manganese and aluminum oxides are of interest due to their generally low cost, 

abundance, low toxicity and high catalytic activity when applied in combination with 

other oxidative processes [19]. However, contradictory results have been reported 

regarding the mechanism of chemical decomposition of ozone on these catalysts 

[2,9,11,18,20–23], the rate of production of hydroxyl radicals [24–26], the role of the 

adsorption of pollutants onto their surface [9], and the effect of alkaline impurities 

present on the catalyst surface [18]. The false catalytic activity of alumina has been 

ascribed to the presence of impurities which increase the pH of the water [18]. In 

addition, the role played by rate of adsorption of the water contaminants in catalytic 

ozonation is rarely discussed. 
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In this study, the catalytic role played by Mn2O3 and -Al2O3 nanoparticles in 

aqueous suspensions is investigated for the removal of HAs, in the presence and in the 

absence of ozone. HAs were selected as representative species of the NOM in drinking 

water supplies. The roles played by adsorption, ozone decomposition, attack of ozone 

from the bulk solution and catalytic decomposition on the solid surface, on the kinetics 

of humic acids removal is examined, and clear evidence of the catalytic effect exerted 

by the -Al2O3 nanoparticles is demonstrated. 

 2. Experimental 

2.1. Materials 

The commercial sample of humic acids (HAs) used in all experiments was 

purchased from Sigma-Aldrich (CAS 1415-93-6). Homogeneous aqueous stock 

solutions were prepared by adding 200 mg of HAs to 1.0 L of distilled deionized water, 

following by ultrasonic sonication (60 min).  

The Mn2O3 and -Al2O3 nanoparticles with average particle diameter of 40-60 

nm were obtained from SkySpring Nanomaterials (USA). All other chemicals were of 

analytical grade and used without further purification. 

2.2. Characterization of catalysts  

The specific surface area, pore diameter distribution and pore volume of the 

catalysts (-Al2O3 and Mn2O3) were determined using a Quantachrome Autosorb-3b 

BET surface area analyzer at -196°C. Prior to the analysis, the samples were degassed 

for 2 h at 300 °C under vacuum. The point of zero charge (pHpzc) of the Mn2O3 and -

Al2O3 nanoparticles was obtained by measurements of the zeta potential at different pH 

values (3.0-11.0) performed on a Stabino-Nanoflex analyzer.  
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The composition of the solids before and after the kinetic runs was determined 

through FTIR analysis using an Agilent Technologies spectrophotometer (model Cary 

600). The particle size and morphology of the nanoparticles were examined by field 

emission gun scanning electron microscopy (FEG-SEM) and by transmission electron 

microscopy (TEM). SEM and TEM analyses were performed using JEOL JSM-6701F 

and JEOL JEM-1011 microscopes, respectively. The crystallographic composition of 

the nanoparticles was examined by X-ray diffraction (XRD) analysis, carried out on a 

Philips X-Pert diffractometer, with a scan of 0.038° s
-1

 and Cu Kα radiation. The 

oxidation state and surface composition of the nanoparticles were assessed through X-

ray photoelectron spectroscopy (XPS) analysis of the samples before and after the 

kinetic runs. The XPS analysis of the nanoparticles was performed using a hemispheric 

VSW HA-100 analyzer. 

2.3. Experimental setup 

2.3.1 Humic acids adsorption onto Mn2O3 and -Al2O3 nanoparticles in absence of 

ozone 

The adsorption of humic acids onto the nanoparticles (Mn2O3 or -Al2O3) was 

determined through experiments performed at room temperature (25 ºC). Known 

amounts of nanoparticles (25 - 250 mg) were added to flasks containing 250 mL of an 

aqueous solutions of HAs with a fixed initial concentration of 50 mg L
-1

. The pH of the 

aqueous suspension, measured with a Quimis Q 400A pH meter, was maintained at 5.5 

in all experimental runs. 

Aliquots of the liquid phase, withdrawn at various contact times, were filtered 

and analyzed by spectrophotometry (Shimadzu, UV-Vis 1650PC) at 254 nm to 

determine the residual concentration of HAs. The concentration of HAs was determined 
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from a calibration curve made in the spectrophotometer with different HA solutions. 

The concentration of HAs in the aqueous phase reached an equilibrium after 

approximately 60 min of contact time and the amount of HAs adsorbed onto the solid 

phase was calculated from the mass balance (Eq. 1). 

    
        

 
 (1) 

where    and    (mgL
-1

) are the HAs initial and equilibrium concentrations, 

respectively,   is the solution volume (L) and   is the amount of catalyst (g) added to 

the system. Langmuir and Freundlich isotherms (Eqs. 2 and 3, respectively) were fitted 

to the experimental data to model the adsorption process: 

    
     

     
 (2) 

       
   

 (3) 

where    is the maximum humic acids loading (complete monolayer covering),   is the 

equilibrium adsorption constant and   and   are constants related to the capacity and 

intensity of adsorption. 

2.3.2 Ozone dissolution and decomposition in water 

The ozonation experiments were carried out in a 2.0 L glass reactor (68 cm high 

and 8 cm in diameter) kept at ambient temperature and constant stirring (~500 rpm). 

Ozone generated from high purity oxygen by a corona discharge ozonator ID-5 (O3R 

Philozon) fitted with an oxygen concentrator was continuously bubbled in the vessel 

through two air diffusers at a rate of 0.063 m
3
 h

-1
. All the experiments were carried out 

in duplicate and the average results were reported. 
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The rate of ozone mass transfer and steady state ozone concentration in the 

reactor system, in the absence of Mn2O3 and -Al2O3, was investigated at different pH, 

ranging from 4 to 7. Solutions of 0.1 mol L
-1

 NaOH or H2SO4 were used to adjust the 

pH. The impact of the catalyst (-Al2O3 and Mn2O3) at low loadings (0.1 and 0.5 g L
-1

) 

on the rate of decomposition of ozone was examined at pH 5.5, since this corresponded 

with the natural pH of the humic acid aqueous solution. In a typical experiment, ozone 

was bubbled into distilled water with or without nanoparticles until the medium reached 

a steady-state ozone concentration. Samples withdrawn at regular time intervals were 

analyzed spectrophotometrically at 258 nm in a Shimadzu UV-Vis 1650PC 

spectrophotometer to determine the residual dissolved ozone concentration. The 

concentration of dissolved ozone in water was determined from the Beer-Lambert law, 

considering the molar extinction coefficient of ozone (2950 M
-1

 cm
-1

 at 258 nm) [27]. 

The solid particles, when present, were removed from the samples by filtering through a 

PVDF membrane (Millipore, 0.22 μm pore size) prior to the spectrophotometric 

analyses.  

The mass transfer and solubility parameters of ozone in the aqueous medium 

were determined by fitting the solution of the mass balance equation of ozone 

absorption and decomposition (Eq. 4) to the experimental data.  

 
    

  
             

          
 (4) 

where      (mg L
-1

) is the saturation concentration of O3,    
(mg L

-1
) is the 

concentration of dissolved O3,     (min
-1

) is the volumetric mass transfer coefficient of 

O3 and       (min
-1

) is the decomposition constant of O3  given by Eq. 5 [28,29]: 

                 (5) 
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where w (g L
-1

) is the catalyst concentration,       (min
-1

) is the rate constant for the 

catalytic decomposition of ozone,    (min
-1

) is the rate constant for the non-catalytic 

decomposition of ozone.  

Different kinetic equations have been proposed to evaluate    (min
-1

) [28,30,31]. 

Considering the  range of applicability of the different equations, the kd value was 

estimated according to Sullivan and Roth [28,32] (Eq. 6), that is applicable in the region 

2  pH  8 and 276.7  T  333.2 K: 

                             
    

 
  (6) 

where       is the concentration of hydroxyl ions and   is the temperature (K). 

The model used in this study (Eq. 4 - 6) considers that ozone is absorbed in 

water and simultaneously decomposes through reaction with the hydroxyl ions (non-

catalytic decomposition) and through reaction on the surface of the nanoparticles 

(catalytic decomposition). Eq. (4) was discretized through the Euler’s method and 

implemented in Matlab
®
 (MathWorks, The MathWorks Inc., MA) to determine the 

model parameters. The value of each parameter was obtained by minimizing the error 

between the model predictions and the experimental data. 

2.3.3 Humic acid removal in the presence or absence of ozone and/or catalyst 

The kinetics of HAs removal, in the presence or absence of ozone and/or 

catalyst, was investigated in the experimental setup described above using 1.0 L of an 

aqueous solution of HAs (50 mg L
-1

). The ozonation of HAs, in the absence of solid 

nanoparticles, was investigated in the range 4.0 < pH < 10.0, while in the presence of  

Mn2O3 or -Al2O3 nanoparticles (0, 0.1 or 0.5 g L
-1

) it was performed at pH 5.5, the 

natural pH of HAs in water. The experiments were performed under vigorous stirring 
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and continuous ozone bubbling. Aliquots of the liquid phase (3 mL) withdrawn at 

regular time intervals were filtered and analyzed by UV/vis spectrophotometry. 

A small amount (0.1 mL) of a solution of sodium sulfite (3 g L
-1

) was added to 

all aliquots immediately after sampling to suppress the residual dissolved ozone and 

further chemical reactions. The decay of HAs over the time (t) was described according 

to a pseudo-first order kinetic model (Eq. 7). 

   
    

     
              (7) 

The stability of the nanoparticles (-Al2O3) was investigated by reusing the solid 

in consecutive experiments performed under the same conditions. After every cycle, the 

nanoparticles were removed by filtration through a PVDF membrane (Millipore, 0.22 

μm pore size) and dried at 60 °C for 24 h before reuse in the next experiment. A fresh 

HAs solution was used in each cycle. 

3. Results and Discussion 

3.1. Characterization of -Al2O3 and Mn2O3 nanoparticles 

The results of the textural characterization of the solids are presented in Table 1. 

The specific surface areas, determined by the BET method, were typical of 

nanomaterials [26,33]. Mn2O3 surface area and pore volume were significantly lower 

that the values for -Al2O3. The pore diameter distribution shown in Table 1 was 

determined by the Barret, Joyner and Halenda (BJH) method [34]. According to IUPAC 

classification, the average pore diameters of the nanoparticles were characteristic of 

mesoporous materials [35]. 
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Figure 1 shows the N2 adsorption/desorption isotherms of Mn2O3 and -Al2O3 at 

77 K. Clearly, the two curves were similar and no hysteresis was observed. Both 

isotherms were type III according to the IUPAC classification, indicating multilayer 

adsorption onto non-porous, macroporous or mesoporous materials [36]. 
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Figure 1 – N2 adsorption/desorption isotherms at 77K using (a) Mn2O3 and (b) Al2O3.  

 

The values for the point of zero charge (PZC) of the Mn2O3 and Al2O3 

nanoparticles are shown in Table 1 and Figure S-1. These represent the pH value where 

negative ([MO
−
]) and positive ([MOH2

+
]) surface concentrations are equal, i.e., the 

surface charge is zero. The catalyst surface charge is negative at pH > PZC and positive 

at pH < PZC. The PZC of Al2O3 was well below the natural pH 5.5 of HAs in solution 

(the pH applied in the catalytic ozonation experiments), therefore the surface of  Al2O3 

was negatively charged during the ozonation experiments, while the net surface charge 

of Mn2O3 was slightly positive at the pH 5.5. 
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Table 1 – Textural characterization and the point of zero charge of Mn2O3 and -Al2O3. 
 Mn2O3 -Al2O3 
BET area (m² g

-1
) 15.6 45.8 

Pore volume (cm
3
 g

-1
) 0.008 0.162 

Pore diameter distribution (nm) 3.78 23.20 
Point of zero charge - pHpzc 5.9 4.2 
Cristallyte size (nm)* 15.9 41.7 

* Calculated by Scherrer Equation [37]. 

 

Figure S-2 (Supplementary Material) shows the FTIR spectra of the -Al2O3 and 

Mn2O3 nanoparticles before and after the ozonation of HAs. Clearly, the vibrational 

absorption spectra of the aluminum and manganese oxide do not show a significant 

change caused by the ozonation of the HAs, indicating that the nanoparticles remained 

stable and that their chemical composition was maintained during the reactive catalytic 

process. 

The large absorption bands at 3450 cm
-1

 observed in Figure S-1, were due to the 

symmetric/asymmetric stretching of the OH group, indicating the presence of water in 

the structure of the compounds. In Figure S-2 (a), the peak observed in the region 

around 1100 cm
-1

 can be attributed to the Al
3+

 and O
2-

 groups at the vibrational surface 

of Al-O. Furthermore, the bands encountered at 495 cm
-1

 can be assigned to the angular 

deformation of the A-O bonds, while the bands at 550 cm
-1

 and 950 cm
-1

 relate to the 

symmetrical flexion of O-Al-O [38]. 

Figure S-1 (b) shows absorption bands between 700 cm
-1

 and 500 cm
-1

, which 

can be attributed to Mn-O and Mn-O-Mn vibrations, respectively [39]. Moreover, the 

peaks observed at 1550 cm
-1

 and 3500 cm
-1

 can be related to the symmetric/asymmetric 

stretching of the OH group associated with the water content in the compound [40]. 

The FEG-SEM and TEM results for the morphological analysis of the Al2O3 and 

Mn2O3 nanoparticles are shown in Figure 1 and 2. Overall, both materials presented a 

heterogeneous morphology and regions with irregular particle size. In particular, the -
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Al2O3 appeared as coalescent particles with a platelet format, typically encountered in 

the structure of α-Al2O3 [41,42]. In contrast, the Mn2O3 particles were circular well-

organized grains. The particles of Mn2O3 and -Al2O3 formed aggregates (Figure 2) 

with diameters of 20-60 nm and less than 20 nm (Figure 3), respectively. 

 

 

  

Figure 2 – FEG-SEM images for Mn2O3 (a, b) and -Al2O3 (c, d) nanoparticles.  
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Figure 3 – TEM images for Mn2O3 (a, b) and -Al2O3 (b, c) nanoparticles. 

 

The X-ray diffraction patterns of the Mn2O3 or -Al2O3 nanoparticles (Figure S-

3, Supplementary Material) showed the formation of crystalline phases in both solids. 

The characteristic diffraction peaks of Mn2O3 nanoparticles were identified at 2 = 

23.13º, 32.95º, 38.23º, 45.16º, 49.34º, 55.17º and 65.77º (JCPDS-89-4836) [43,44]. The 

diffraction peaks of -Al2O3 nanoparticles appeared at 2 = 25.57º, 35.14º, 37.76º, 

43.33º, 52.53º, 57.47º, 61.27º, 66.49º, 68.18º and 76.84º (JCPDS-88-0826), as also 

reported by Kim et al. [42]. However, diffraction peaks associated with Al(OH)3 (2 = 

18.68º, 20.25º and 45.57º, JCPDS-15-0138) were also observed, which indicated the 

presence of residual traces of this compound during the synthesis process of -Al2O3. 
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The crystallite sizes (Table 1) calculated according to Scherrer equation [37] were near 

to the particle size informed in the supplier data sheet.  

The oxidation state of the -Al2O3 and Mn2O3 nanoparticles before and after 

ozonation process was investigated by XPS and the results are shown in Figure 4 and 5, 

respectively. 

 

  

   

Figure 4 – XPS spectra of O 1s and Al 2p for -Al2O3 nanoparticles before (a, b) and 

after (c, d) ozonation. 

 

The fresh -Al2O3 sample (Figure 4(a)), showed two contributions to the O 1s 

signal at 531.2 eV and at 532.6 eV, corresponding to the Al-O bond and to the oxygen 

of the OH group, respectively [45]. Moreover, the peak at 75 eV observed in Figure 

4(b) related to Al 2p and was attributed to Al in the 3+ oxidation state [45].  
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The peaks at binding energies of 531.8 eV and 533.4 eV observed after 

ozonation (Figure 4(c)) corresponded to the O2
-
 and OH ions, respectively, while the 

level Al 2p shifted to higher binding energies (75.4 eV) after ozonation (Figure 4(d)) 

indicating a possible increase in the oxidation state [46]. 

Figure 5 shows the XPS spectra for the Mn2O3 nanoparticles after ozonation. 

The XPS spectra of the fresh Mn2O3 sample can be found in a previously published 

work of the same research group [47]. 

  

Figure 5 – XPS spectra of O 1s and Mn 2p for Mn2O3 nanoparticles after ozonation. 

 

In the O1s region, Figure 5 (a), the XPS spectra of the manganese oxide sample 

taken after ozonation showed peaks with binding energies of 529.3 and 531.2 eV, due to 

the Mn-O bond which was also present in the fresh Mn2O3 [47], while the peak at 

533.1 eV related to the oxygen of the OH group. Moreover, peaks related to the binding 

energies of 653 eV and 642 eV shown in Figure 5 (b), corresponded to Mn 2p1/2 and Mn 

2p3/2, respectively [48]. The fresh Mn2O3 nanoparticles showed the same peak at 653 

eV, but the second peak, related to Mn 2p3/2, had binding energy of 641 eV [47]. 

According to Li et al. [33], the peak due to Mn 2p3/2 can be used to determine the 

oxidation state of manganese in its oxides. Peaks close to 640, 641 and 642 eV can be 

540 536 532 528 524

 

 

 
In

te
n

s
it
y
 (

a
. 
u

.)

Binding Energy (eV)

(c)
O 1s

660 655 650 645 640 635

 

 

In
te

n
s
it
y
 (

a
. 

u
.)

Binding Energy (eV)

Mn 2p
1/2

Mn 2p
3/2



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

attributed to Mn
2+

, Mn
3+

 and Mn
4+

, respectively. Therefore, before ozonation, the 

Mn2O3 nanoparticles were in the 3+ oxidation state and, while after ozonation, the 

manganese main oxidation states were Mn
3+

 ( 62.9 at %) and Mn
4+

 (37.1 at %).  

The co-existence of two oxidation states Mn
3+

/ Mn
4+

 on the Mn2O3 surface is 

indicative of electron transfer from the metal oxide to the ozone molecules, which could 

result in the formation of free radicals (

OH, 


O2H and 


O2

-
) [12,49,50]. This 

observation might imply faster rate of degradation of HAs, if these were adsorbed onto 

the solid surface where ozone would be continuously adsorbed and decomposed. 

3.2. Absorption and decomposition of ozone in water  

The study of ozone decomposition in non-catalytic and catalytic reactions and 

the aspects of mass transfer are of fundamental importance in the study of ozonation 

systems applied to water treatment. Mainly because the decomposition of ozone in 

water and the formation of hydroxyl radicals is directly related to the rate of mass 

transfer of ozone from the gas to the liquid phase. 

Figure 6 shows the kinetics of dissolution of ozone in water at different pH in 

the absence of catalyst and the impact of catalyst dosage at pH 5.5. The model 

parameters fitted to the experimental data are shown in Table 2. Clearly, the 

concentration of ozone in the aqueous medium increased until a steady state was 

reached, when the ozone absorption rate equaled the sum of the ozone decomposition 

rate due to reaction with hydroxyl ions (Eq. 9) and the heterogeneous reactions 

occurring on the solid surface (Eq. 10 – 13) [29]. 

 

          
     (9) 
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          (10) 

            (11) 

                (12) 

            (13) 

 

The reaction sequence of ozone decomposition on oxide surfaces (Eq 10-13) 

involves the dissociative adsorption of ozone to form an oxygen molecule and atomic 

oxygen. The reaction of atomic species with gaseous ozone forms an adsorbed peroxide 

species and gas phase oxygen, and finally the decomposition of the peroxide 

intermediate produces molecular oxygen [51].  

Moreover, the results showed that the ozone equilibrium concentration slightly 

decreased at more alkaline pH (~15%), Figure 6 (a), due to the higher concentration of 

OH
-
 ions in solution, which initiated the decomposition of ozone leading to a chain 

reaction with the participation of free radicals [52]. Thus, the constant for the non-

catalytic decomposition of ozone (kd), Table 2, increased at higher pH and this 

translated with an increase in the overall rate of ozone decomposition. In the more 

acidic medium the decomposition is smaller, since lower concentrations of OH
- 
ions are 

available to decompose the O3 molecule. 
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Figure 6 –Dissolved ozone concentration in aqueous phase as a function of reaction 

time: (a) at different initial values of pH (4.0, 5.5 and 7.0) without catalyst; and (b) with 

different dosages (0.1 and 0.5 g L
-1

) of Al2O3 or Mn2O3 nanocatalysts at pH 5.5 

(T = 25 ºC, flow rate of O3 = 0.063 m³ h
-1

). Model predictions (lines) and experimental 

data (points). 
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Table 2 –Parameters (kd, kLa, Csat and Ce) fitted to the experimental data of ozone 

absorption and decomposition in aqueous medium (T = 25 ºC, flow rate of 

O3 = 0.063 m³ h
-1

). 

pH Catalyst 
Catalyst dosage  

(g L
-1

) 

kd  

(min
-1

) 

khet  

(L
-1 

min
-1 

g
-1

) 

kLa  

(min
-1

) 

Csat  

(mg L
-1

) 

Ce  

(mg L
-1

) 

4.0 - - 0.0391 - 

0.21  11.17 

9.04 ± 0.09 

5.5 

- - 

0.0597 

- 8.90 ± 0.19 

Mn2O3 
0.1 

0.7 
5.92 ± 0.06 

0.5 4.27 ± 0.05 

-Al2O3 
0.1 

0.2 
7.92 ± 0.08 

0.5 6.83 ± 0.13 

7.0 - - 0.0914 - 7.68 ± 0.11 

 

In this study, Csat was considered as an adjustable parameter. However, the value 

determined from the fitting of the model to the experimental results (11.17 mg L
-1

) 

considerably agrees with the literature (11.4 mg L
-1

) [53].  

The rate of decomposition of dissolved O3 in the water significantly increased 

(up to 15%) in the presence of catalyst (Figure 6b). At pH 5.5, the neutral or weakly 

positively charged Mn2O3 produced a higher rate of ozone decomposition in comparison 

to -Al2O3, which is negatively charged at pH 5.5. The net surface charge affects the 

desorption of the peroxide species O2 S since these have a partial ionic character (O
2-

, 

O2
2-

) [54], and consequently this facilitates the regeneration of the active sites on the 

surface of the catalyst. Since the desorption energy of peroxide species (O2 S) increases 

with decreasing surface coverage [54], the desorption of (O2 S) from the negatively 

charge -Al2O3 surface will decrease the desorption rate of O2 molecules (Eq. 13) and 

therefore the regeneration rate of the -Al2O3 surface, resulting in slower O3 

decomposition in -Al2O3 than in Mn2O3. 

The rate constant of catalytic decomposition of ozone (khet) is a function of the 

hydroxyl ion concentration [29], which is a typical equation commonly found from 

Langmuir Hinshelwood mechanism. At a constant pH (pH 5.5) the values of khet for 
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Mn2O3 and -Al2O3 are 0.7 and 0.2 L
-1

 min
-1

 g
-1

, respectively (Table 2). The present 

study shows clear evidence that -Al2O3 is an effective catalyst to decompose ozone in 

aqueous phase, although this effect has been associated by some authors [17,18] to the 

impurities contained in the -Al2O3 that raises the pH of the water. This effect was not 

evidenced in this study. The only Al(OH)3 impurity in the -Al2O3 (Figure S-3) could 

contribute to the catalytic effect, but no significant change of the pH was measured after 

the introduction of the oxide to water due to the acidic character of the solid surface 

(pHpzc = 4.2) (Table 1).  

Moreover, the concentration of ozone at the steady-state decreased as the 

concentration of the nanocatalysts in the water increased (Figure 6b) giving strong 

evidence of the catalytic effect of these oxides. Good agreement was found between the 

kinetic model (Eq. 2 – 4) and the experimental data. The selection of the experimental 

conditions for the effective removal of HAs with ozone and Mn2O3 and -Al2O3 

nanoparticles were therefore based on the results of ozone decomposition on the two 

oxides. 

3.5. Ozonation of HAs in water  

The kinetics of HAs removal as a function of pH was investigated in the range 

from 4 to 10 (Figure 7), to determine the impact of ozone decomposition in the absence 

of nanoparticles. As expected, a higher degradation rate of HAs was observed under 

alkaline conditions, since the ozonation mechanism follows an indirect route in which 

the strong 

OH radical

 
is produced. However, a relatively high rate of HAs degradation 

was also observed at acidic pH, as a result of the direct attack of ozone on the electron 

rich sites in the HAs molecules, such as amines aromatics, olefins, and other polar 

groups [55]. The reactions of HA with 

OH radicals are non-selective, while the 
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mechanism of reactions of HAs with molecular ozone are selective [29]. The 

decomposition of HAs with ozone was accompanied by a progressive decrease of pH, 

due to the formation of acidic fragments [55]. Therefore, the uncompleted removal of 

HAs observed in Figure 7 could be ascribed to the formation of intermediate acidic 

compounds recalcitrant to attack by molecular ozone, since at this pH values the 

concentration of 

OH radical would be insignificant. 

Overall the results show negligible impact of pH in the interval from 5.5 to 10.0, 

and a negative impact at pH 4.0, which decreased the HAs removal by approximately 

10%. In all cases the removal of HAs was higher than 70%, it approaches 80% at 

circumneutral pH and reached 87% at highly alkaline pH.        

 

Figure 7 – Kinetics of humic acid ozonation at different initial pHs (T = 25 ºC; flow 

rate of ozone = 0.063 m³ h
-1

; [HA]0 = 50 mg L
-1

). 

3.4. Adsorption of HAs onto -Al2O3 and Mn2O3 nanoparticles  

The adsorption of HA on -Al2O3 nanoparticles at equilibrium and at pH 5.5 is 

shown Figure 8, whilst the adsorption on Mn2O3 was insignificant (Figure S-4, 
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Supplementary Material). The equilibrium isotherm of -Al2O3 could be described by 

the Langmuir or Freundlich models, for which the parameters are shown in the inset of 

Figure 7.  

 

 

Figure 8 – Adsorption of humic acid onto -Al2O3 nanoparticles (pH = 5.5; T = 25 ºC; 

[HA]0 = 50 mg L
-1

) and fitting of Langmuir and Freundlich isotherms. Model 

predictions (lines) and experimental data (points). 

 

The adsorption of HAs onto -Al2O3 is pH dependent [56]. Although a 

fractionation of the HAs organic matter remaining in solution could occur as a result of 

adsorption onto -Al2O3 [56], this effect can be considered negligible in the present 

study since the HAs concentration adsorbed vastly exceed the limit of 20 mg g-Al2O3
-1

 

reported in literature at which this phenomenon is considered important [56].     

The HAs used in this study presented two pKa values: one attributed to the OH 
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adopted in this study (pH 5.5) and could thus be attracted to and adsorbed onto the 

negatively charged surface of the -Al2O3 nanoparticles. On the other hand, the pHzpc of 

the Mn2O3 nanoparticles was close to that of the aqueous solution (Table 1), thus, only 

weak interactions could be established between the surface of Mn2O3 and the HAs. In 

addition, both the surface of Mn2O3 and the HAs were positively charged at pH 5.5. 

Therefore, the low surface area of Mn2O3 (Table 1) coupled with the weak repulsion 

forces at the surface of the Mn2O3 nanoparticles explains the insignificant extent of HAs 

adsorption observed. These observations suggest that the reaction mechanism of 

removal of HAs on -Al2O3 and Mn2O3 in the presence of ozone can also be 

significantly different. -Al2O3 adsorbs a significant fraction of HAs but has lower rate 

of ozone decomposition, while Mn2O3 has very weak interactions with HAs but has a 

higher rate of ozone decomposition. 

3.6 Ozonation of HAs with suspensions of -Al2O3 and Mn2O3 nanoparticles  

The rate of HAs removal with ozone, at pH 5.5, was nearly the same with or 

without Mn2O3 (Figure 9). Although, Mn2O3 did not remove HAs by adsorption, it 

presented higher catalytic activity than -Al2O3, to decompose ozone in the aqueous 

phase. In contrast, the removal of HAs with ozone was significantly enhanced by the 

presence -Al2O3, as a result of the higher rate of HAs adsorption and catalytic 

decomposition of O3 on the solid surface. The heterogeneous  reaction of HAs with 

ROS generated at the surface of -Al2O3 plays a key role in the removal process. The 

kinetics data where fitted by pseudo-first-order model, and the reaction rate constants 

are shown in Table 3 as function of pH, together with the catalytic rate constant ratio (k1-

HAcat/k1-HA), which is defined as a ratio of the pseudo-first-order rate constant for HA 
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degradation by catalytic ozonation (k1-HAcat) and the pseudo-first-order rate constant for HA 

degradation by non-catalytic ozonation (k1-HA). 

 

 

Figure 9 – Kinetics of humic acids ozonation and humic acid adsorption on Mn2O3 or 

-Al2O3 nanoparticles in the presence or absence of ozone (pH = 5.5; T = 25 ºC; 

[HA]0 = 50 mg L
-1

; flow rate of ozone = 0.063 m³ h
-1

). 

 

Table 3 – Pseudo-first-order specific rate constant for humic acid degradation by non-

catalytic (k1-HA) and catalytic ozonation (k1-HAcat) at different pHs and catalyst dosages 

(T = 25 ºC; flow rate of ozone = 0.063 m³ h
-1

; [HA]0 = 50 mg L
-1

).  

pH Catalyst 
Catalyst dosage 

(g L
-1

) 

Pseudo-first-order 

specific rate 

constant, min
-1

 

R² 

k1-HAcat/ k1-HA 

4.0 - - 0.056 ± 0.009
*
 0.925 - 

4.2 
- - 0.092 ± 0.012

*
 0.951 - 

-Al2O3 0.1 0.122 ± 0.023
**

 0.901 1.326 

5.5 

- - 0.114 ± 0.006
*
 0.991 - 

Mn2O3 
0.1 0.123 ± 0.008

**
 0.986 1.079 

0.5 0.129 ± 0.020
**

 0.933 1.132 

-Al2O3 
0.1 0.220 ± 0.042

** 0.895 1.930 

0.5 0.262 ± 0.035
** 0.949 2.298 

5.9 - - 0.080 ± 0.009
* 0.963 - 
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Mn2O3 0.1 0.125 ± 0.017
** 0.949 1.562 

7.0 - - 0.115 ± 0.005
*
 0.994 - 

10.0 - - 0.134 ± 0.016
*
 0.954 - 

* non-catalytic ozonation, k1-HA;  ** catalytic ozonation, k1-HA) 

 

At pH > pHpzc (5.5 > 4.2), the negatively charged surface of the -Al2O3 

nanoparticles enabled the adsorption of larger fraction of HAs, therefore, the catalytic 

rate constant ratio (k1-HAcat/ k1-HA) decreased from 1.930 to 1.326. Moreover, the 

catalytic effect of Mn2O3 on the HAs removal at pH 5.5 was not observed, and no 

significant difference between the HAs removal with or without Mn2O3 nanoparticles 

was found (k1-HAcat/ k1-HA ~ 1). As discussed earlier, the repulsive forces between the 

positively charged Mn2O3 surface and the protonated HAs molecules at pH 5.5 argue 

against a catalytic effect. So, similar mechanisms are involved on the HAs removal by 

ozone in the presence or in the absence of Mn2O3 nanoparticles. However, at the pHpzc 

of Mn2O3 particles (5.9), the catalytic effect becomes significant (k1-HAcat/ k1-HA =1.562) 

due to the more favorable conditions for HAs adsorption and the high rate of ozone 

decomposition on the catalyst surface. As shown in Figure 6b, the -Al2O3 and Mn2O3 

nanoparticles are effective catalysts for the decomposition of ozone (Reactions 9-13). 

The lower catalytic activity of -Al2O3 in comparison to Mn2O3 does not limit the 

ability of -Al2O3 to catalytically decompose HAs. The apparent higher HAs 

decomposition rate observed with -Al2O3 should also be ascribed to the much larger 

surface area (Table 1) and favorable rate of HAs adsorption, although this last factor can 

be manipulated by an appropriate selection of pH.   

The main mechanism for HAs removal in the presence -Al2O3 nanoparticles 

can be proposed as the simultaneous adsorption of both HAs and O3, the reaction of 
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ozone from the bulk solution and the catalytic decomposition of HAs on the solid 

surface by ROS, through complex series-parallel reactions.  

To support this hypothesis, consecutive reusing cycles of the -Al2O3 catalyst 

were performed. Each run lasted 60 minutes and the catalyst was reused without any 

regeneration or specific treatment. A progressive decrease of the pseudo-first-order rate 

constants (Figure 10) was observed over 4 cycles, indicating a partial saturation of the 

surface solid by HAs adsorption. This effect maybe associated with a progressive 

decrease of the amount of free adsorption sites by irreversible chemisorption of HAs 

and/or its degradation byproducts, which decreases the adsorption capacity for ozone.  

 

 

Figure 10 – Pseudo-first-order rate constant for humic acid removal cycling 

experiments using -Al2O3 (T = 25 ºC; flow rate of ozone = 0.063 m³ h-1; [HA]0 = 50 

mg L
-1

, [Al2O3] = 0.5 g L
-1

, pH = 5.5). 

 

FTIR analysis of the -Al2O3 catalysts before and after the cyclic tests (Figure 

11) was performed to investigate the mechanism of catalyst deactivation. The 
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absorption band at 500-600 cm
-1

 of -Al2O3 (Figure 11a) is due to Al-O stretching 

vibration and appears in all samples containing -Al2O3: after HAs adsorption (Figure 

11d), after the first cycle (Figure 11b) and after the fourth cycle (Figure 11c). The 

typical FTIR spectrum of pure HAs (Figure 11, trace e) presents a broad absorption 

peak at 3500–3400 cm−1 attributed to C=C stretching in the aromatic rings and O-H 

stretching in the alcohols and phenols, and a comparatively sharp absorption peak at 

1618 cm−1 arising from the skeletal vibration of C=C in the aromatic rings or C=O 

stretching in quinones. A similar spectrum was obtained after HAs adsorption on the -

Al2O3 surface (Figure 11, trace d), although the peaks in the range 600 – 1000 cm
-1

 

decreased after consecutive cycles (Figures 11c) with a tendency to match the patterns 

of the the fresh -Al2O3 sample (Figure 11a). This behavior could be related to the 

continuous renewal of the catalyst surface due to the reaction catalytic decomposition of 

ozone on the surface of the catalyst and reaction of ROS with HAs on the solid surface 

and/or desorption of HAs. 
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Figure 11 - FTIR vibrational absorption spectra for (a) -Al2O3; (b) and (c) - Al2O3 

after 1 and 4 cycles, respectively; (d) -Al2O3 after adsorption of HAs and (e) pure 

HAs. Adsorption in the presence or absence of ozone conditions: T = 25 ºC; 

flow rate of ozone = 0.063 m³ h
-1

; [HA]0 = 50 mg L
-1

, [Al2O3]=0.5 g L
-1

, pH = 5.5.  

 

4. Conclusions 

This study investigated the mechanisms of reaction of ozone with HAs in the 

presence of -Al2O3 and Mn2O3 nanoparticles. The adsorption of HAs, ozone 

decomposition and the surface reactions are all important factors that control the 

effective removal of HAs. The results revealed that Mn2O3 decomposed ozone more 

effectively than -Al2O3, but the low surface area and unfavorable adsorption 

conditions for HAs resulted in slower HAs removal than -Al2O3. pH plays a key role 

in the catalytic action of both -Al2O3 and Mn2O3 nanoparticles. At the natural pH of 

HAs aqueous solution (pH 5.5) Mn2O3 did not exhibited catalytic action during the 

ozonation of HAs, while a significant catalytic effect was observed with -Al2O3. The 

mechanism of the HAs removal on -Al2O3 nanoparticles proceeds through adsorption 

of HAs on the alumina surface, the attack by ozone from either the bulk solution or by 

the ROS on the catalyst surface and the catalytic decomposition of humic acid on the 

solid surface. This study, however, showed that the catalytic action of Mn2O3 for the 

removal of NOM by ozonation can be best revealed at pH higher than 5.9, the PZC of 

Mn2O3, and by synthesizing nanoparticles with larger specific surface areas.  

Notably, the -Al2O3 dosage (0.1 – 0.5 g L
-1

) required to remove HAs in the 

presence of ozone was significantly lower than in other studies, employing granular 

activated carbon and iron coated zeolite (up to 2 g L
-1

) or γ-alumina (30 g L
-1

 – 50 g L
-

1
). 
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The results of this study demonstrated the need of performing in-depth mechanistic 

studies on the treatment of contaminated water by catalytic ozonation with metal oxides, 

since NOM is indigenous to most natural water and plays a key role in the removal of 

other dissolved contaminants of emerging concern.  
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